ON THE CAUCHY PROBLEM FOR
HYPERBOLIC OPERATORS WITH
TRIPLE CHARACTERISTICS WHOSE
COEFFICIENTS DEPEND
ONLY ON THE TIME VARIABLE

Seiichiro WAKABAYASHI

Abstract. In this paper we investigate the Cauchy problem for hy-
perbolic operators with triple characteristics whose coefficients depend
only on the time variable. And we give sufficient conditions for C'*™°
well-posedness. We shall also consider necessary conditions.

1. Introduction

In [12] we studies the Cauchy problem for hyperbolic operators with dou-
ble characteristics whose principal parts have time-dependent coefficients.
And we gave sufficient conditions for the Cauchy problem to be C'* well-
posed under the assumption that the coefficients, for instance, are real an-
alytic. These sufficient conditions are also necessary if the space dimension
is less than 3, or if the coefficients are semi-algebraic functions with respect
to the time variable. In [11] we considered the Cauchy problem for hyper-
bolic operators of third order with time-dependent coefficients and defined
the sub-sub-principal symbols. We showed that the Cauchy problem is C*>
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well-posed under some conditions on the subprincipal symbols and the sub-
sub-principal symbols. In this paper we shall deal with hyperbolic operators
with time-dependent coefficients and triple characteristics and give suficient
conditions for the Cauchy problem to be C'* well-posed. Our results are
extensions of the results given in [11] to higher-order hyperbolic operators.
In doing so, we shall introduce new quantities as generalizations of “sub-sub-
principal symbols.” It will be proved that our sufficient conditions are also
necessary for C'* well-posedness under additional conditions.

Let m € N and P(t,7,{) =77 + >, > lal<i .o (t)T"IE* be a polyno-
mial of 7 and £ = (&, -, &,) of degree m whose coefficients a; ,(t) belong to
C>([0,00]). Here a = (a1, , ) € (Z1)" is a multi-index, |a| =77, a;
and £ = &M -+ &0m, where Z, = NU{0} (= {0,1,2,3,---}). We consider

the Cauchy problem

(CP) {P(tth’DIM(t, z) = f(t,z) in[0,00) x R",

Dlu(t, x)]imo = uj(x) mR* (0<j<m—1)

in the framework of the space of C* functions, where D; = —id/0t ( = —i0}),
D, = (Dy,---,D,) =—i(0/0x1,---,0/0x,), f(t,z) € C(]0,00) x R™) and
uj(x) € C*(R™) (0<j <m—1).

DEFINITION 1.1. (i) The Cauchy problem (CP) is said to be C* well-
posed if the following conditions (E) and (U) are satisfied:

(E) For any f € C*([0,00) x R") and u; € C*(R") (0<j <m—1)
there is u € C*°([0,00) x R") satisfying (CP).

(U) If s > 0, u € C([0,00) x R™), D}u(t,z)|=o =0 (0 < j <m—1)
and P(t, Dy, D,)u(t,x) vanishes for ¢ < s, then u(t, z) also vanishes for
t<s.

(ii)) We say that the Cauchy problem (CP) has finite propagation property
( has finite propagation speeds) if the following condition (F) is satisfied:

(F) For any T > 0 there is a convex closed cone I'r in R™ ( with its vertex
at the origin) such that I'r C {¢ > 0}U{0}, and for any (o, 2°) € R"™!
with 0 <ty <T

uw=0 in Ip(ty, 2°) = {(tg,2°)} — I'p
if u e C°(R"™), suppu C [0,00) x R™ and
P(t,Dy, D,)u =0 in I'p(tg, 2°).
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We assume that the following conditions are satisfied:
(A-1) a;o(t) (1<j<m,|a| =7, j— 1) are real analytic on [0, c0).

(A-2) For some ko € [1,3/2) a;4(t) € EF}([0,00)) (2 < j < m, |a| =
Jj—2).
Here we say that a(t) € £ (1) if for any T > 0 there are h > 0 and C > 0
satisfying
|OFa(t)| < CphF (k) for k € Z, and t € I with |t| < T,

where 1 < k < oo and [ is a closed interval of R. From (A-1) there are a
complex neighborhood € of [0, 00) (in C) and dy > 0 such that [—dy, c0) C Q,
QN {X e C; ReX < T} is compact for any 7' > 0, and a;o(t) (1 < j <m,
|a| = j) are regarded as analytic functions defined in 2. Put

PO ="+ D aja(t)T" e (
i=1 Jal=j

Pi(t,7,¢&) = Z Z o) (0<k<m-—1).

j=m—k |a|=k+j—m

En(t,7,)),

We also assume that the following conditions (H) and (T) are satisfied:

(H) p(t,7,€) is hyperbolic with respect to J = (1,0,---,0) € R""! for
t e [—50,00), i.€.,

p(t, 7 —1i,§) #0 for any (t,7,€) € [—dg,00) x R x R".

(T) The characteristic roots are at most triple, i.e.,

Bp(t,7,6) #£0 if (t,7,6) € [0,00) x R x S" and
plt, 7€) = 0p(t, 7,€) = Op(t, 7,§) = 0
where S"1 = {¢ € R"; || = 1}. Let I'(p(t,-,-),9) be the connected com-

ponent of the set {(7,£) € R"™ \ {0}; p(t,7,£) # 0} which contains o, and
define the generalized flows K (:lt:o,aco) for p(t,7,&) by

K(fo ) = {(t(s),z(s)) € [0,00) x R"; £5 >0 and {(t(s),z(s))} is

a Lipschitz continuous curve in [0, 00) x R" satisfying

(d/ds)(t(s), x(s)) € T'(p(t(s),-,-),d)" (a.e.s)and
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(£(0),2(0)) = (to, 2")},

where (tg,2") € [0,00) x R® and T* = {(t,z) € R"™; tr + 2 -£ > 0 for
any (1,&) € I'}. K(t L0y (Tesp. Ko o)) gives an estimate of the influence

domain ( resp. the dependence domain) of (¢y,2°) (' see Theorem 1.2 below).
To describe conditions on the lower order terms we define the polynomials

hy(t,7,8) (= hy(t,7,&;p)) of (1,€) by

p(t, T — 7,6 ZvQﬂhm (7€)
for (t,7,€) € [0,00) x R x R" and v € R.

Since |p(t, 7 — i, &)* = [T, (= Ai(t,8))? ++%), we have

(1) mtrd)= > H Ni(8,€)° (1<k<m),

1<1 <ja<--<jr<m I=1

where p(t,7,£) = [[Z (7 — A;(t,€)). Let R(&) be a set-valued function,

whose values are discrete subsets of C, defined for £ € S"! satisfying the
following;:

For any T" > 0 there is Ny € Z such that
#{IN € R(E); ReX € [0,T]} < Ny for £ € SP7L.

Here #A denotes the number of the elements of a set A. We assume that
0 € R(¢) when R(£) # 0. The subprincipal symbol of P(t, Dy, D,) is defined
by

sub o(P)(t,7,&) = Pp_1(t,7,€) + 8t87'p(t 7,§).

We assume

(L-1) for any 7" > 0 there is C' > 0 such that

(12)  min{ min |t s, }lsub o(P)(t,7.€)| < Chys (t,7,6)2
EIS
for (t,7,€) € [0,T] x R x §"*

as the Levi condition for the (m — 1)-th order terms of P. Here we define
mingege) [t — | = 1 when R(§) = 0. To impose the Levi condition on
the (m — 2)-th order terms of P we have to define some quantities. Let
20 = (tg, 70, £%) € [0, 00) x R x S™ L satisfy (0¥p)(2°) =0 (0 < k < 2). Define
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a monic polynomial p(t, 7, &; 2%) of 7 of degree 3 satisfying the following:

p(t, 7,&; 2°) is defined for (t,&) € U(2°) and p(t, 7, €) is divided
by p(t, 7,&; 2°) as polynomials of 7, and, putting p(t, 7, &; 2°) =

p(t,7.)/p(t, 7, 2°),
TeI(z% if (t,&) eU(ZY), |¢] =1 and p(t,T,&;2°) =0,
| (7,86 2°) #0 i (t,8) e U(2Y), ] = T and 7 € I(2°),

where U(2°) is a neighborhood of (to,£%) and I(z°) is a neighborhood of 7.
Then we write

p<t7 T, 57 zO) = 7_3 + 3] (t7 5) zO)TQ + a2<t7 67 ZO)T + QS(ta 5) ZO)'
We define
1 -
(13) Q(tv T, 67 ZO) :Pm72<t7 T, 6) + éafaip(t7 T, 57 ZD) : p(t> T, 67 ZO)

+ 1ata$p<t 620 - (7, € 20)

+ lzazsub o(P)(t,7,€) - 8,02p(t, 7, &; 2°)

+ ﬁ(ata?.p(t, T, 57 ZO>>2 ’ a‘rﬁ(t7 T, 57 ZO)
for (¢t,€) € U(z") and 7 € R.
The Levi condition for the (m — 2)-th order terms of P is the following:

(L-2) For any 2° € [0,00) x R x S"7! with (0¥p)(z°) =0 (0 < k < 2)
there is C' > 0 such that

(1.4) min{ min [t — s|%, 1}|Q(¢, —ay(t, &; 2°) /3, &; 2°)|
SER(E)
S Ohm—2(ta _al(t7 57 ZO)/?)a 5)1/2
for (¢,€) € U(z") with [¢] = 1.
We note that

(15) QU 7.&) =Pi1,7.) + GORp(L 7.0

+ 5O Pt ) - D2t 7. )

when m = 3. In [11] we defined the sub-sub-principal symbol sub? o(P)(t,
7,&) of P by the right-hand side of (1.5).

Now we can state our main result.



THEOREM 1.2. We assume that the conditions (A-1), (A-2), (H), (T),
(L-1) and (L-2) are satisfied. Then the Cauchy problem (CP) is C* well-
posed. Moreover, (CP) has finite propagation property, more precisely, if
(to,2°) € (0,00) x R™ and u € C*=([0,00) x R™) satisfies (CP), u;(z) =0
near {x € R"; (0,2) € K, o)} (0<j<m—1)and f =0 near K .
(in [0,00) x R™), then (ty, x°) ¢ supp u.

Assume that m > 2, and put

(6.9 = 0569 - (e 9, v = (1)

and define {D,(t, &)} 1<i<m by

TM + Z Dl(ta S)TM_Z - H (T T Mj’k(t7 6))

1<j<k<m

Note that Dy (t,€) (= D(t,€)) is the discriminant of p(¢,7,£) = 0 in 7.
Putting Dy(t,&) = 1, for each & € S™! there is r(¢) € Z, such that 0 <
r(§) < M and

DM<t7£) == DM—T(£)+1(t7€) =01int,
Darorie(1.€) £ 0 in ¢

It is easy to see that

DM,T(g)(t,f) = H ,ijk(t,g),

1<j<k<m

r(€) =#{(j,k); 1<j <k <mand p(t,§) =0 in t}.
We define
Ro(§) = {(ReX)y; A€ Qand Dy_p(N,§) =0} for £ € st

where a; = max{0,a} for a € R. By Lemma 2.1 below we may assume that
for any T' > 0 there is Ny € Z, satisfying

#(Ro(£) N[0,T]) < Ny for £ € S"71,
modifying € if necessary.

THEOREM 1.3. Assume that n < 2, and that the condition (T) and the
following conditions (A) and (H)' are satisfied:
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(A) a;a(t) (1<j<m,|a|=7j—1,j—2) are real analytic in [0, o).
(H) p(t,7,&) is hyerbolic with respect to 9 fort € [0,00).

If the Cauchy problem (CP) is C*° well-posed and has finite propagation
property, then for any compact interval I C (0,00) the following conditions
(L-1); and (L-2); are satisfied:

(L-1); There is C' > 0 such that
min{ min [t — s|, 1}[sub o(P)(t,7,€)| < Chy-s(t,7,6)"
SGRo(f)
for (t,7,6) € I x R x S" 1,
(L-2);  For any 2° = (to,70,£") € I x R x S" " with (9p)(z") = 0 (

0 < k < 2), there are 6 > 0, a neighborhood U of £&° and C > 0 such
that

min{ min |t — s|*, 1}Q(t, —ai(t,&;2°)/3,&; 20|
SGRo(f)

< Ohp_s(t, —as(t, & 2°) /3, 5)1/2
for (t,6) € (IN[to — d,to +0]) x (S NU).

Let U be a semi-algebraic set in R, and let h(t) be a function defined in
U. For the definition of semi-algebraic sets we refer to [14], for example. We
say that h(t) is semi-algebraic in U if the graph {(¢,h(t)) € R*} t € U} is a
semi-algebraic set. For basic properties of semi-algebraic functions we refer
to [14] and [15].

THEOREM 1.4. Assume that the conditions (H)', (T) and the following
condition (A) are satisfied:

(A) ajo(t) (1<j<m,|a|=7j—1,5—2) are semi-algebraic in [0, 00).

Then the conditions (L-1)j0 ) and (L-2).1 for any T > 0 are satisfied if the
Cauchy problem (CP) is C* well-posed and has finite propagation property.

The remainder of this paper is organized as follows. §2 and §3 will be
divided into subsections. In §2 we shall prove Theorem 1.2. Theorems 1.3
and 1.4 will be proved in §3.



2. Proof of Theorem 1.2

2.1. Preliminaries

Let I be an interval of R, and let [' be an open cone or a closed cone in
R\ {0}. Here ‘cone’ means that its vertex is the origin. Let &, " € R. We
say that a(t,§) € STo(I x I') if a(t,§) € C=(I x I') and

(21)  |Dioga(t, O < Crale™™
for (t,§) e I x (I'n{|¢{] > 1}) and any j € Z, and « € (Z)".

When a(t, {; ) also depends on a parameter €, we say that a(t,;¢) € S7o(/ x
I') uniformly in ¢ if the C;, in (2.1) with a(¢, ) replaced by a(t,&;€) can be
chosen so that they do not depend on e. Moreover, we say that a(t,7,§) €
S (IxT)if a(t, 7,€) = X0 a;(t, &) and a;(t,€) € Sig™ /(I xT), where
[k] denotes the largest integer < x and Sig/(] xI') = {0} if Kk < 0. We
also write SFo(I x ') = S§(I x T') and Sy (I x T) = Nyer Sty (I x T).
When a(t, 1,&;¢) = Zg'i]o a;j(t,&; )77 depend on a parameter £, we say that
a(t,7,&¢) € Sﬁgl(IxF) uniformly in € if a;(t,&;€) € ng”,_j(lxl“) uniformly
in €.

LEMMA 2.1. Let I" be a closed cone in R™\ {0}, and let a(t, ) be a real
analytic symbol defined in [0, 1] X T, which is positively homogeneous in §. So
there is a complex neighborhood ) of [0, 1] such that a(t,&) is holomorphic in
teQ foré el Put

A e a(N6) =0} ifa(t, &) #0int,
Ral8) = {(Z) ifa(t,&) =0 int

for £ e T'NS" 1. Then there are N € Z, and C > 0 such that #R.(§) < N
foréE TN S™ L and

min{ min_ |t~ s|, 1}19.a(t,€)| < Cla(t, O] for (1,€) € [0,1] x ("N 5™)

REMARK. It follows from the proof that there are Cy > 0 ( &k € N)
satisfying

min{ r%ir(lg) it —s|", 1} 0Fa(t, &) < Cila(t,&)] f1<Ek<N
s€Ra

min{ I%ir(lf) it — sV, 1}|0Fa(t, &)| < Cila(t, &) ifk >N
s€Ra

for (¢,€) € [0,1] x (T'N S™1).



PROOF. Replacing [—6,d] and U with [0,1] and {¢ € T'; 1/2 < |¢| < 2},
respectively, we apply the arguments as in the proof of Lemma 2.2 of [12].

Put )
=Amwmwt

If K(¢) = 0, then the lemma become trivial. So we may assume that x(§) # 0.
Let 0 € {¢€ €Ty 1/2 < |€] < 2}. We apply Hironaka’s resolution theorem
to k(£) ( see [1]). Then there are an open neighborhood U(£°) of €2, a real
analytic manifold U(£°), a proper analytic mapping ¢ = ¢(£°) : U(£%) 3
= p(a) (= p(a; ) € U(EY) satisfying the following:
(i) o UEY\ A — U(E) \ A is an isomorphism, where A = {¢ € T
1/2 < |¢] < 2 and k(€) = 0} and A = o (A).

(ii) For cach p € U(£) there are local analytic coordinates X (= X?) =
(Xq, -, X)) (= (XT,--+, XP)) centered at p, r(p) € Z, withr(p) <n,
si(p) € N (1 <k < r(p)), a neighborhood U(£% p) of p and a real
analytic function e(X) in V(£°;p) such that e(X) > 0 for X € V(&% p)
and

r((it) HXk )2 (@ e UE%p)),

where V(€% p) = {X(@); @ € U(¢%p)} and [[}%) -~ = 1 if r(p) = 0.

Here ‘7(50;]3) is a neighborhood of 0 in R" and we have used the fact
that £(€) > 0. Define ¢ (= (€",p)) : V(€%p) > U(E) by $(X(@)) (=
G(XP(a);€%p)) = () (= (@:€%) for @ € UE%p). Let Up(¢) be a
compact neighborhood of £ in U(£%), and put Up(€%) = o 1 (Up(£?)). Fix
pE 170(50), and put

O_/(p) = (Sl(p)a e aST(P)(p)7 07 o 70) € (Z-i-)ny
calts p) = ~0%alt, 5(0)) =0

Note that a > «(p) if @ € (Z;)" and c,(t;p) #Z 0 in t ( see the proof of
Lemma 2.2 of [12]). So we can write

alt, 3(X)) = X*Pa(t, X; p),
a(t, X;p) = ca)(t;p) + 0(t, X;p),

where b(t, X;p) is real analytic in (¢, X) and satisfies b(¢,0;p) = 0. Since
( p) #Z 0 in ¢, we can apply the Weierstrass preparation theorem to
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a(t,X;p) at (t,X) = (ty,0), where t, € [0,1]. Then there are d(p,ty) >
0, a neighborhood X7(p, to) of 0 in T/(go;p), m(p,to) € Z,, a real analytic
function c¢(t, X; p, to) defined in [ty — d(p, to), to + d(p, to)] X ‘N/(p, to) and real
analytic functions ay(X:p,to) defined in V(p,to) (1 < k < m(p,t,)) such
that c(t, X;p,to) # 0 and

a(t, X;p)
= C(ta X7p7 t0)<tm(p’t0) + a; (X7p7 tO)tm(pvtO)il + o+ am(p,to)(X;p7 tO))

in [tO - 5(p7 t0)7 tO + 6(}9, tO)] X ‘7(]9, tO) Note that 6(]9, tO)a ‘7(29, tO)a m(p7 t0)7
c(t, X;p, to) and the agx(X;p,t) also depend on £°. So we can write

m(p,to)

a(t, (X)) = X°We(t, X;p,to) [ (t—te(X;p,t0))
k=1

for (t, X)) € [to — 0(p, to), to + 0(p, to)] X V(p, to). We may assume that

{t( X5 t0),  tnpto) (X 0y t0) 3 Xy -2 Xy # 0,

Ra(@(‘)()) = {@ if Xer(p) =0.

Then we have

(2.2) min{ LN s|, 1}da(t, o(X))| < C(p, to)la(t, o(X))|
for (t,X) € [to — 8(p,to), to + 6(p, to)] x V(p, to), where C(p,to) > 0. Since
0,1] x {£ €T 1/2 < |£] <2} and (70(50) are compact, compactness argu-
ments prove the lemma. O]
From the assumption (T) there are §; > 0, Ny € N, m(j, k) € N, open
cones I'; in R™\ {0}, 7(j) € N, compact intervals J;; and p*(t,7,€) €
Sf,lo(j’k)([oa(sl] x (T;\{0})) (1 <j < Ny, 1 <k <r(j)) such that m(j, k) < 3,
the p*(¢,7,£) are monic polynomials of 7 and positively homogeneous of
degree m(j, k) in (1,€) € Rx (T;\{0}) such that U;V:(’l L, D8 JnJ;, =
@forlngNoand1§k<l§r(j),

(2.3)  p(t,7,6) = pr (t,7,€) for (t,7,€) €[0,6] x R x (T; N S"™1),

7€ Jipif 1 <j< Ny, 1<k <r(h), (£,€) €[0,8,] x (T;NnS" 1), 7€ C and
pjk(tTf)—O and for each (j,k) with 1 < j < Ny and 1 < k < r(j) there
is (7,€) € R x (T; N S satisfying

(04p)(0,7,6) =0 (0<p<m(jk)—1).
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Let § > 0 and I" be a closed cone in R™ \ {0}. We say that a(t,§) €
A ([0,0] xT') if a(t, €) is real analytic in [0, §] x I" and a classical symbol, i.e.,
when a(t,£) # 0, there are k € Z and real analytic symbols a;(t,€) (j € Z4)
such that ao(t,€) # 0, a;(t, ) is positively homogeneous of degree (x — j) in
£(J€Zy) and a(t,€) ~ Y70 ay(4,6), ive.,

=

’&(t,f) - aj(t7€)| S CN’&‘H_N

J

I
o

for (¢,€) € [0,0] x I with |¢| > 1 and N € N, where Cy > 0. Here ay(t, &) is
called the principal symbol of a(t, §).

LEMMA 2.2. Assume that p(t,,§) € Aa([0,6] x I')[7] is a monic polyno-
mial of T, positively homogeneous of degree m ( € N) in (7,&) and hyperbolic
inT, e, plt,7+£i,§) #0 for (t,7,£) € [0,0] x R x T'. Write

m

plt, 7€) = [[(r — Ni(t. 9)).

J=1

Then, for each fized &€ € T'N S™ ! we can enumerate {\;(t,€)} so that the
A(t, &) are real analytic in t € [0,6]. Moreover, for any v € Z. there is
N, (= N, (p)) C T satisfying the following:

(i) XeN,ifA>0and€N,.
(i) pa(N;) = 0.
(iii) There is N, € Z, such that

#{t €[0,0]; 07 (A;(£,6) — M(t,€)) =0} < N,
fO<p<v,1<j<k<mand0;(\j(t,§) — M\(t, &) Z0 int,

{1 € [0.0) O\(1.€) =0} < N,
fO<p<v,1<j<mandd\(t,§)Z0int

for £ e T\ N,.
Here i, denotes the Lebesgue measure in R™.

REMARK. The lemma is a generalization of Lemma 2.3 in [11]. We also
need to apply the lemma to 9,p7%(t, 7, &) with m(j, k) = 3.
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PROOF. We will modify the proof of Lemma 2.3 of [11]. First fix
el nS™ Forty € [0,8] Ay, denotes the convergent power series ring of
(t — to). Since Ay, is a unique factorization domain, A, [7] is also a unique
factorization domain. Applying the same argument as in the proof of Lemma
2.3 of [11], we can prove the first part of the lemma. In doing so we note
that \j,(to + 2", &) is analytic in a complex neighborhood of z = 0 with some
r € N and that \j (o + 2", &) can be expanded as a power series of z ( see
the proof of Lemma 2.3 of [11]). Hyperbolicity implies that \;, (to + 2", &) is
real if 27 is real, and that \; (to + 2", &) is a power series of z". So we can
take r = 1 and \; (£,€) is analytic in ¢ near ¢t = t;. We denote by X the
quotient field of A.([0,60] x I'). Then X[r] is a unique factorization domain
and p(t, 7,&) € X[r]. Write

p(t,7,6) = p (6,7, P (L, 7,8)"

where o,r; € N, the p/(t,7,€) ( € X[r]) are irreducible in X[7] and p? (¢, 7, £)
and p*(t, 7, &) are mutually prime if j # k. Define ¢(t,7,&) = H;’lej(t, 7,§),
and let D(t,£) be the discriminant of ¢(¢,7,£) = 0 in 7. Then there are
di(t,€) € Ay([0,8] x T)\ {0} ( k= 0,1) such that

D(t7 5) - dO(t7 g)/dl(tv f),

since D(t,€) # 0 in 3. Here we may assume that the di(¢,£) are positively
homogeneous in £ ( see the proof of Lemma 2.3 of [11]). Write ¢(t,7,&) =
T 4 Z?;l a;(t,&)r™ . Similarly, there are a’(t,£) € Aa([0,0] xT) (1 <
j <m-—1,1=0,1) such that the dé (t,€) are positively homogeneous in
£, aj(t,€) # 0 (in Aq([0,0] x T)) and a;(t,€) = aj(t,€)/aj(t,€), since the

a;(t, &) are positively homogeneous in . Put

={€ecT; do(t, €)dy(t,€) H L(t,6)=01int € [0,4]}.

Then we have p,,(ANg) = 0. We can choose functions \;(t, &) (1 < j < 1h)
defined in [0, 6] x (I'\ Ny) such that the \;(¢,§) are real analytic in ¢ for a
fixed £ € '\ N and

m

q(t,7,8) = [J(r = Ai(t,€)) fort €0,6] and € € T\ Ab.

j=1

Note that
{;\1(t?£)7 e aj\rh(tvg)} = {07 Al(ta 5)7 e 7)\m(t>€)}
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for (t,€) € [0,8] x (I'\ Ny). We may assume that Ay (t,€) = 0. Note that
the a;(t, &) are real analytic in ¢t € [0,] for £ € T\ Np. If € € '\ Aj and

m—

t € De = {s €[0,48]; do(s,&)dy(s H (s,€) # 0},

then the roots of ¢(t,7,£) = 0 in 7 are simple. It follows from Lemma 2.2
and its remark of [12] that there is Ny € Z, satisfying #([0,0] \ D) < N
for £ € T'\ Ny. This proves the second part of the lemma for v = 0. Let
£ €'\ Ny. Then we have

aTQ(ta T, 5) |7—:5\j(t7§) ' 8t;\j (t7 é) + atQ(ta T, £> |7-:5\j(t,§) = 0

for 1 < j <. Therefore, for t € D, we have
O (t,€) = =0u(t, 7. &), 25, )/ Ora (6, T, ) s e (1 <5 < 7).

Since Ay (t, &) = 0, we have

II&% (t,&) = 0.
Noting that

H(S‘j(tf) )‘k(t g)) TQ(t T, €)|~r e (£,6)

k#j
= I Gt = At.€) = (-1 DDt

1<k,l<rn, k1

for a fixed j with 1 < 7 < m, we can write the other fundamental symmetric
expressions as follows:

> T oAt )
J=1 k#j
(_1>m71+m(m71)/2

X Z H{(S‘k<t7 g) - 5‘j (ta €)>8tq(t7 T, £>|7—:5\k(t,§)}/D(t7 5)

=1 kj

= Epua(t,€)/D(L6),

13



Zatij(t,g) = Ei(t,£)/D(t,§),

where the Fy(t, §) are polynomials of {9}a;(t, &)} 1<j<m-1,1=01. Put

plt,7,&) =7 — B (t,§)D(t, &) " + En(,)D(t, &) 2
+- +< )™ By (8, D(t, €)™

(- T aaen).

Let us repeat the above argument with 7p replaced by p. We write

pt, 7€) = pH(t, 7, )" -7 (t,7, €)'

where o/, 7 € N, the p/(t,7,€) ( € X[r]) are irreducible in ¥[7] and 7 (t,7,€)
and p*(t, 7, &) are mutually prime if j # k. Put

qt, 7,6 = Hp]tTf

and let D(t,£) be the discriminant of §(¢,7,£) = 0 in 7. Then we can write

D(t,€) = do(t,€)/d:(t,€),

where dj,(t,€) € Aq([0,8] x T') \ {0}. Here we may assume that the dj(t, €)
are positively homogeneous in £. Write

qt,7,8) = T+ Z J(t>§)7jn_ja
a;(t,€) = aj(t, &) /a;(t,€) (1<j<m-1),
(

where a(t,£) € Aa([0, (5] xI) (1 <j<m-=1,1=0,1) are positively
homogeneous in £ and a;(t, &) # 0 in Ay([0,0] x I'). Define

= {€ € T; do(t, €)du(t, €)m7 a;(t,6) = 0int € [0,8]} UNG.

j=1

Then we have pu,(N;) = 0. It is obvious that Aj is a cone. Similarly, there
is Ny € Z, such that

#{t € [0,0]; 9(Nj(t,€) — Mi(t,€)) = 0}

14



(< #{t €[0,0); do(t,&)di(t,€) H L(1,6) =0}) < Ny

if € € T\ WM, 1< <k < and & (\;(t,€) — M(t,€)) # 0 in t. This proves
the second part of the lemma for v = 1. Repeating the above arguments we
can prove the lemma for v = 2,3, - - -, inductively. O

We choose p(t) € E7}(R) so that p(t) > 0, [p(t)dt = 1 and suppp C
{t € R; [t| < 1}. Define

aja(tie) = /pg(s)ajya(t —s)ds (3<j<m, |a] <j—3),

W(t, T, € €) Z > aaltie)T" I (0<k<m-—3),

j=m—k |a|=k+j—m

P(t,T,&¢€)

OMM
=
??‘
=
\‘
M
M
<
=
-~
\1
ooy

for 0 < e <1, where p.(t) = e 'p(t/e).

We approximate P(t,7,&) by P(t,7,&;¢) in order to prove that (CP)
has finite propagation property. We factorized p(t,7,§) as (2.3). By the
factorization theorem we can write

(2.4) P(t,7.&¢)
= PPNt 7,&€) 0 PP2(t,7,&6) 0+ -0 PPU(E 7, &5 6) + R;(t, 7, &5 €)

for 1 < j < Ny, (t,€) €[0,0,] x T; with |¢] > 1 and € € (0, 1], where
PPt T &) = PRt 7€)+ ag " (8,7 ) + a1 (17, €) + (T € ),

q*(t.7.6) € ST 70,0,] x (T; \ {0}) (1 = 0.1) are positively ho-
mogeneous of degree (m(j, k) — 1 —1) in (7,&) for |£] > 1, r9*(t,7,&¢) €
Sy TE2(10,61] x (T {0})) uniformly in e and R;(t, 7, &¢) € Sty ([0,
1] x (T, \ {0})) uniformly in € ( see, e.g., [5] and, also, [12]). Here we de-
note by a(t, 7,€) o b(t, 7,€&) the symbol of a(t, Dy, D,)b(t, Dy, D). There are
compact intervals [;;, (1 < j < Ny, 1 <k <r(j)) and M > 0 such that

7(7)

U[Jk—_ M,

re Ly H1<j<No, 1<k<r(j), (t,7.6) €[0,6] xRx (T[,n5""

ﬂ;j,lzﬁ(lijNm k:?él)a

~o
.
B
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and p"*(t,7,€) =0,

where I denotes the interior of I ( € R). For 1 < 5 < Nj and J C
{1,2,--- ,r(j)} we define

Hg(taTv 5) = H pj’u<t,T, g)

1<u<r(s), ngJ

Now we fix j with 1 < 5 < Ny. Until the end of the proof of Lemma 2.4
except the statements of Lemmas 2.3 and 2.4 we omit the subscript j and
the superscript j of T;, PP(-), R;(-), p"*(-), Lig, T (t,7,€), ---, and “j”
of r(j), m(j,k), --- and so on, i.e., we write I';, P#*(-), R;(-), p™*(-), ]M,

Hzf(t77_7 £)a T(j), m(]a k)v Teeoas F) Pk()7 R()v pk('>7 Ika HJ(thv 5)7 r, m(k)a
-, respectively. Let a(t, 7, &) and b(t, 7,&) be defined in Y. We write

a(t,7,§) = O(b(t,7,£)) for (t,7,) el
if there is C' > 0 satisfying

la(t,7,&)| < C|b(t,7,€)| for (t,7,6) €U
Assume that a(t, 7,€),b(t, 7,£) > 0. We write

a(t,7,&) = b(t,7,&) for (t,7,8) elU
if there is C' > 0 satisfying
C~la(t,7,€) <b(t,7,€) < Calt,7,€) for (t,7,6) €U
LEMMA 2.3. Let 1 < 57 < Ny. We have

r(5)

(2.5)  subo(P)(t,1,§) = Zsub o(PPR)(t, T, 5)H§k}(t777 £)
—; > AP O (7, 6)

1<k<i<r(j)

= sub o(PP*)(t, 7, I, (,7,6) + O(hm-1(t,7,€)"/?)
for (t,7,€) €[0,8,] x R x T; with || > 1,
where
(P P (7€) = 0, (t,7,€) - O (8,7, ) — O (t, 7, )0 (8,7, €).

16



Moreover, we have

(2.6) P_a(t,7,8)

()
=Y M, -0 Y oot sub o (PP, ,
k=1 1<k<I<r(j), v#k,l
+ Z sub o(P"*)sub J(Pj’l)HJ{k I
1<k<i<r(j)
—2 3 90 sub o(PPYIN,
1<k,I<r(j), k#l
— Z {0.p"" - Oysub o(P') + Oyp™ - O sub U(Pj’k)}nik,z}
1<k<i<r(j)

=5 Y {0t G0 + 0wt - 00,

1<k<I<r(j)

+ O(hyna(t, 7,)'?)  for (t,7,€) € [0,61] x R x T; with || > 1,

where quk = qj7k(t7 7, 5)7 Hik} = H%k} (ta T, £>7 aﬂ'pj7k = 8ij7k(t7 T, f); sub o
(Pjﬂ/) = sub O-(Pj7l/)<t77—7 5)7 .

Proor. We can prove by induction on r that

(27> Pl(ta T,f;é‘) o P2<t77—7£;8> ©---0 Pr<t77—7§;8>
~[Ir e+ > dbt.m oM
k=1 k=1

—1 Z o.p" - Oyt - i

1<k<i<r

—1 Z 8Tpk : atpl ' QgH{k,l,u}

1<k<I<r,v#k,l

Y i+ > ey

k=1 1<k<I<r

—1 Z {ank : 8tQé + Oy - 8TQ§}H{]€,I}

1<k<i<r

1
-5 > 0o Ty

1<k<I<r

— > 0wt oY Tk

1<k<l<v<r

17



- Z ank : {atanl . 8tpy + anl : ay?py}n{k,l,z/}

1<k<l<v<r

— > o.p" - Oyp' - O.p” - Opp - H{k,l,u,u}]
1<k<I<r,k<v<u<lr
v#L p#l

€ STO_L_Q([O, 01] x (f\ {0})) uniformly in ¢,

where, for example, Iy =[]0/« 1 pl(t,7,€). Tt follows from (1.1) that

(2.8) Poney—1(t, 7, & PF) & By (8, 7, €)
for (t,7,6) €10,01] x I x (T NS™1)
if 1 <k<rand0<Il<m(k),
(229) iyt 7,E05) & (7] 4+ 1)
for (t,7,€) € [0,6,] x (R\ L) x (T NsS™1)
if 1 <k<randO0<Il<m(k),
(2.10)  hp(t,7,6) = (7] +1)* 2
for (t,7,€) €10,01] x ((—o0, —M) U (M, 00)) x ([ N S™ 1)
1<l <m.

We have also, with C' > 0,
(2.11) 002 (t, 7, €)| < Chungry—p—s(t, 7, E)Y*(|7] + 1)

for 1 <k<r, u,veZ, withpu+v<m(k)and (t,7,€) €[0,6;] x Rx (TN
Sm=1). (2.7) - (2.11) prove the lemma. O

Now assume that (L-1) is satisfied. Let 1 < ky < r with m(ko) = 3. Then
there is C' > 0 such that

min{ min [t — |, 1}[sub o(P)(t, 7, €)| < Cho(t, 7. &)
sE

for (t,7,€) €10,01] x R x (T N.S™1). Write

pk(tha 5) = H(T - Af(uf))a

=1

Pu(t,7,6) = p"(t,7,6) /(1 = Ni(¢,€))

(1<k<r 1<pu<m(k)). Note that hy(t, T, &;p") = Zi:lprO(t’T’ 2. It
follows from Lagrange’s interpolation formula that there are functions b,,(t, £)

18



(1< u<3)and C > 0 satisfying

3

(2.12) sub o(P*)(t,7,¢) = Zbﬂ (t, )pie(t, 1,§),
1 i — s, 1 <
(2.13) mln{sg;zlg) |t — s, }\bu(tﬁ)\ <C

for (t,&) €[0,0,] x (T NS™Y) ( see the proof of Lemma 2.5 of [11]).

LEMMA 2.4. Assume that (L-1) is satisfied, and that 1 < j < Ny, 1 <
ko < 1r(j) and m(j, ko) = 3. Then there is C' > 0 such that

2.14 t — s|, 1}|0"sub o (PPk)(t
@14)  minf_min [~ 5| 1osub o(PH) (7, )
< ChQ u(t T7§7p]k0)1/2 ( % S 2)7
(2.15) min{ min |t — s|%, 1}|9,sub o(P*™)(t,7,)|/(]7| + |€])
seR(E/IE)

S Ohl (t7 7_7 g’p]’k0>1/2

for (t,7,€) €[0,8,] x R x T; with || > 1, modifying R(§) if necessary.

PROOF (2.14) easﬂy follows from (2.12) and (2.13). Write p*(¢,7,£) =
75+ al(t, )12 + ko (t, &)1 + ak*(t,&). We have

sub a(P*)(t,7,€) = sub o(P*)(t, —a'(t,£)/3,€)

+ (7 + ay°(,6)/3)(Orsub o (P*))(t, —ay’(t,€) /3, €)
_l’_

7+ a0 (1,6 /32 sub o (P))(1,0,6),

noting that deg, sub o(P*)(t,7,£) < 2. Therefore, we have
(2.16) 0ysub o (P*)(t,1,€)| < |0sub o(P™)(t, —ak/3,¢)|
1
+ —|@tak°(t &) - (Orsub a(P™))(t, —at/3,€)]

+ |7+ af® /3] - 10,(0-sub o (P*))(t, —af /3, )]
+ |7+ ay /3] [B,ay° (£,€)| /3 - |(9Zsub o (P*))(£,0,6))]

1
5|7+ a1 /3% - 1002 sub o (P*))(¢, 0, )]
Modifying R(§) if necessary, we can assume that

{ReX; X € Q and sub o(P¥)(\, —af (), €)/3,€) = 0}
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C R(E) If sub o(P*)(t, —at(t,€)/3,€) Z0in t

for ¢ € T N S™!, where €, is a compact complex neighborhood of [0, 1].
Lemma 2.1 yields

min{ min |t — s|?, 1}8sub o(P*) (¢, —a*(t,£)/3,
{_min_ 0= s 1}asub o (P) (6~ (1,€)/3,6)

< Cmin{ min |t — s|,1}|sub o(P*)(t, —at(t,£)/3,€)|
sER(E/IED)

for (t,€) € [0,0,] x T with |¢] > 1, where C' > 0. Note that —a*(t,£)/3 € I,
for (¢,€) € [0,6,] x (T N S™1). So by (L-1), (2.8) and (1.1) we have, with
C >0,

(2.17) min{ el [t = s?, 1}Opsub o (P*)(t, —a"(t,€) /3. €)|/I€]

< Chy(t, —ai (t,€)/3,& p*)'?
for (¢,€) € [0,6,] x T with |¢] > 1. Since

3

1
[T+ (66/31 < 31T = AR < ult, 7 &0"),

pn=1

ha(t, —ay° (t,€) /3, & p™)"? <Z|a (t,)/3+ A2 (t,€)]
< 2OMI(€) — MO, E)]+ N — M M — Al
3
%2:: 7 — AR (8, €)| < 4hy(t, 7, & p" 0)1/2

for (¢,7,€) € [0,6,] x R x T with [£] > 1, (2.14), (2.16) and (2.17) give (2.15).
[

We wrote
PR T, E) =T+ al* (8,77 + b (8, T + afF (2, ©)

if 1 <j <Ny, 1<Ek<r(j)and m(j,k) = 3. We say that (L-1) for [0,4] is
satisfied if (1.2) is satisfied with [0, 7] replaced by [0, d], and that (L-2) for
[0, 6] is satisfied if (1.4) is satisfied with [0, c0) replaced by [0, d].

LeEMMA 2.5. (i) (L-1) for [0,01] is satisfied if and only if there is C > 0
such that

(2.18) min{ min |t — s|, 1}|sub o(P?*)(t,1,€)|
sER(E)
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S Chm(j,k)—1<t77-7£;pjjk>1/2 fOT <t7 T, 5) S [0761] X R x (Fﬂ S”*1>

provided 1 < j < Ny, 1 <k <r(j) and m(j, k) =2 or 3.
(i) Assume that (L-1) for [0,01] is satisfied. Then (L-2) for [0, 6] is satisfied
if and only if there is C' > 0 such that

(210)  min{ min |t — s, 1}|sub? o (Pt~} (1.)/3.6)

< Chy(t,—a}*(t,€)/3,&pP")Y%  for (t,€) € [0,0,] x (T; N .S™7)

provided 1 < j < Ny, 1 < k < r(j) and m(j,k) = 3, modifying R(§) if
necessary, where
(2.20) sub® o (PPF)(t,T,€)
. 1 . i . .
= @47, + SR 1,7, €) + SO (1,7, €) - D 1,7, )

REMARK. In the lemma the interval [0,4;] can be replaced by a closed
subinterval of [0, d;]. From (2.5) we can see that whether the sub o(P?*)(t, T,
€) satisfy (2.18) or not does not depend on the order of the product in (2.4)
while they depend on the order. Moreover, (2.26) below implies that whether

the sub® o (P3*)(t, 7, €) satisfy (2.19) or not does not depend on the order of
the product in (2.4) while they depend on the order.

PrROOF. (2.5) and (2.8) — (2.10) prove the first assertion (i). Assume
that 1 < j < Ng, ZO = (to,’Tg,é—O) S [0,(51] X R % (Fj N Sn_l), (3ip)(20) =0
(0<1<2),1<ky<r(), m(yky) = 3and 790 € I;i. Note that
p(t, 7, & 20) = phFo(t,7,€) and p(t, 7, &; 2°) = H{ko}(t,T, €). Moreover, we may
assume that U (2°) = [0,6,] x (T, \ {0}) and I(2°) = L, in the definition of
Qt, 7,6 2%, and Q(t,7,&;2°) is defined in [0,46;] x R x (T; \ {0}). We say
that

a(t,7,§) =0 (mod (L-2)) at 2° for (¢,€) € [0,6,] x ['; with [¢] > 1
if there is C' > 0 such that
min min [¢ = s 1yat, —ai™ (t,€)/3.€)| < Chya(t, —a}™ (£,€)/3,)"
for (¢,€) € 0,6,] x (T; N.S™1).

(L-2) implies that Q(¢,7,&;2°) =0 ( mod (L-2)) at 2° for (¢,£) € [0,d,] x T
with [¢] > 1. Tt follows from (2.6) that

(221) g™ (t, 7, O,y (1, 7,€) = Proa(t, 7€)
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+1 Z anLk(t T, 5) ’ 8tpj7l(t7 T, g) - sub O-(Pj’ko)(ta T, 5)
1<k<i<r(j)
k,i#£ko

X Hiko,k,l} (t, T, 5)
_ Z sub U(Pj’ko)sub a(Pj’k)kao,k}
1<k<r(5), k#ko

7 . . .
+5 > 0 sub o(PPRIE,
1<k<r(5), k#ko

+1i Z Pt - O, sub o(PIk0) . H{kmk}

ko<k<r(j)

4 Z O-p"F - Oysub o(PIF0) . H{{'ko,k}

1<k<ko

Z Pk - 0,02 p7o . Hiko,k}

ko<k<r(j)

+ 5 Z an]’k ' 8§8ij,ko ’ Hz[ko,k} + O(hm*Q(u T, 5)1/2)

1<k<ko

for (t,T,é-) € [0,51] X Ij,ko X fj with |€’ > 1,

DO | —

_|_

where sub o(P?*0) = sub o(P?*)(t,1,£), - -, since
[, (t,7,€) = O(pP (¢, 7, &) || 0P %)
= O(hmaft, 7,€)" 2| 7"0072) (ks # ko),
O™ (t,7,6) = O(ha(t, 7,65 p") /%),
O (t,7,€) = Olha(t, 7,6 p") 28],

80,70 (L, 7,€) = O(hy(t, 7, & pPF0) /2 g))
for (¢,7,€) € [0,01] X L, x T with [¢] > 1.

It also follows from (1.3) and Lemma 2.3 that
1 . .

(2:22)  Pona(t,7,8) + S0 01, 7,€) - Ty (8,7, €)

* éafsub a(P)(t,7,€) - 2P0 (¢, 7, €)

1 . .
= Q(ta T, 67 ZO) - Zata?-p]’ko <t7 T, 5) : 8tHi’]g0}(t> T, 5)
1 . .
- ﬂ(atazp]’ko (ta T, 5))2 ’ aTH%ko}(ta T, 5)7

(223) {D2q)™ (8, 7,€) - 11}, (8, 7,€) — DZsub o (P)(t, 7, €)}0,02p"" (¢, 7€)
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= —{20,sub o(P*) . aTn{ko}(z, 7, &)
+ sub o (PP*) - 2TH, (1, 7,€)}0,02p" (1,7, €)
+ % Z {Gatka - atagpj’ko : anLk}H{ko,k} ' ata?—pjko

ko<k<r(j)

=5 D0 {60 - QI - O I - 002

1<k<ko
+ O(hm—2<t7 Ta §)1/2)
for (t,7,€) € [0,81] x Ik, x I'; with |¢] > 1,

since
O2sub o (PP)(t,7,€) = 823" (1, 7€),
O (8,7, 7 (8,7, €)}
= 60,p"" (t, 7, 6) — 0,0°p"F0 (¢, 1,€) - 0.p"" (t, 7, €)
+ O(h(t, 7,6 pM0) 2[g[ "0
for (t,7,€) € [0,81] x Ijx, x T; with [¢] > 1 and k # ko,
Mt 7, & PP I = Olhma(t,7,€))
for (t,7,€) € [0,81) x Ly, x T; with |¢] > 1.
Therefore, (2.20) — (2.23) yield
(2.24) Sub2O'(Pj’ko)(t,T,f)Hj{'ko}(t,7',5)
= @™ (t, 7, O, (t, 7€)

+ aafafpﬂko (t,,&) - H]{ko} + E@fsub o (P)0,0%p'*o

+ {02 - 1,y — 02sub o (P)}002pH

1 ; j
= mfZ(ta T, 5) + éagazp]’ko ’ H]{kO}
T é&fsub o(P) - 0,02p"*
i S ot o sub o(PPOIE, L

1<k<I<r(4)
k,I£ko

_ Z sub o (P?*)sub U(Pj’k)H?{'ko,k}

1<k<r(j), k#ko

i ' / A
+s > 90 sub o (PP,
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Z O’ - 9-sub O'(Pj’ko) H?{ko K}

ko<k<r(j)
4 Z O p* - Opsub o (PIk0) . H?{ko k}
1<k<kg
1 i i
S aptoacpsem,,
ko<k<r(j)
1
1S o o Ty )+ Ohal,r. 07
1<k<ko
n 1Z {82 ko H?{k )~ 8zsub O(P)}atagpj’ko
=71 Z anL (t; T, f) . atpjyl(tv T, f) - sub U(Pj7ko)<t7 T, 5)
1<k<i<r(j)
k,l#£ko

X Hik wy (675 6)
_ Z sub O'(P] ko)sub U(P] k)H?{k k)
1<k<7“( ), k#ko

oY 00 sub (PRI,

1<k<r (), k#ko

+i Z O - Opsub o (PIk0) . H?{kok}

1<k<kg

> o Oesub o(PYR) LTI,

ko<k<r(j)

1 ik 02 j e J -0
_|_ 5 Z 87.# . at 3Tp] 0 H{k k} + Q(taTafﬂz )
1<k<ko

1 . .
— 55 2 @I o T

1<k<ko
— E{2&3ub o(Piko) . O, 1l y + sub o(P? k°)82ﬂj{k }}8,583]07”“0
+ O(hm—Z(t7 T, 5)1/2)
for (t, T, 5) S [0,51] X ijko X Fj with ‘5’ > 1,
since

Ol (T, 8) = ) O™ Ty o+ > 0Pt Thy

k‘0<k<’f‘( ) 1§k<k0
O I1? {k } (t,7,6) = Z O’ {k s Z Orp’ 'H?{ko,k}'
ko<k<r(j) 1<k<ko
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It follows from (2.14), (2.15), and (2.24) that
(2.25)  sub® o(PH)(t, 7, )T, \(t,7,€)

1 . 1 . . .
=Q(t, 7,6 2" + D) Z {07 0.p" — g(atazp;,koy}@p],k T

1<k<ko

(mod (L-2)) at 2 for (¢,&) € [0,6,] x T; with |¢] > 1.

On the other hand, we have

(2074)(0, ~a}"™(1,€)/3.6) — (D021, 1" /3,6
— 0 (2:0,070) (8, —al™ /3,6)}

since

0™ (1,€) = S0 (1,7, €)
Modifying R(§) if necessary, we can assume that
{ReX; A e Q and (9,0.p7%)(\, —al™ (X, €)/3,€) = 0} € R(€)
if (D,0-p™)(t, —a™ (t,€)/3,€) £ 0 in ¢,

where 0 is a compact complex neighborhood of [0, d;]. Since, with C' > 0,

[(D:0:p") (1, =ai™ (£,)/3,€)] < Ch(t, —a7™ /3,6 p"™) V2 I¢]
for (¢t,€) € [0,6,] x ['; with |¢| > 1,

Lemma 2.1 and (2.25) give

( ° ) u E ( j’k())(t? 75) J (t7 7 ) (t7 ) ; 0) ( 1 ( - )) t 0
2.26) sub”o(l I{ko} S ® 3k mod (L-2)) at 2
for (¢,€) € [0,01] x I'; with [£| > 1,

which proves the assertion (ii). O

2.2. Proof of Theorem 1.2

In this subsection we assume that the conditions (A-1), (A-2), (H) and (T)
are satisfied. In order to prove Theorem 1.2 we first derive energy estimates
for each factor in (2.4). Fix j with 1 < j < Ny, and define

m

(m—!l)! I:I(T—A,(f)(t,f)) (1<1<m—-1),
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m(j,k)—l1

k() oy __mU k! k)
p]kl (t77—7 5) - aql—p]k(th’ g) - (m(j, k) . l)' ;!;[1 (T Aikl (t,f))

(L<i<m(jk)-1)

for (¢,€) € [0,6;] x T; with |¢] > 1 and 1 < k < r(j), where p(¢,7,&) =

[T (7 = ult, ) and p(t,7,€) = 11#& (7 = Aj(t,€)). Here, by Lemma
2.2 we may assume that the \,(¢,£), A (t €), MF(t,€) and )\Jk (t,€) are
real analytic in ¢ € [0,6;]. We write, for 1 <k< 7“( ),

Pt T, €) = [T -Xt9) ifm(jk)=2o0rs3,

1<u<m(j,k), p#l

it = I =X
1<u<m(g,k), p#i,l

if 1 # 1 and m(j, k) = 3,

p* Ot 7€) = 3(r — NFO (1, €))
it m(j, k) = 3, [=1,2 and {I,u} = {1,2},

(2.27) Pt 1,6) = plF(t, 7, ) — anl "t 7, €) if m(j, k) =2 or 3.

Note that P (¢, 7,€) = pl*(t, 7,€) if m(j, k) = 2.

LEMMA 2.6. (i) (L-1) for [0,01] is satisfied if and only if there are symbols
bjll;( &) (1 <1< m(j,k)) and C > 0 such that the bjl,l (t,€) are positively
homogeneous of degree 0 in & and

(2.28) sub o(PP)(t,7,€6) = mf) vyt Pt (t,7,6),
I=1
220 min{ i - L DPEGOISC (1T <m0
for (t,7,€) € ([0,0] \ R(€)) x R x (I; N S"™)
provided that 1 < j < Ny, 1 <k <r(j) and m(j, k) =2 or 3.
(ii) Assume that (L-1) for [0,01] is satisfied. Then (L-2) for [0, 61] is satisfied

if and only if there are symbols bé’f(t,f) (1=1,2) and C > 0 such that the
bg’f;(t, &) are positively homogeneous of degree 0 in & and

3
sub® o(PPF)(t,7,€) = 6 )(t,0,€) Z (t,7,6)
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+Zb (t, O (t, 7€),

(2.30) min{ n"7121r2) it — s|?, 1}\b;l(t 5)\ <C (1=1,2)
€
for (t,7,€) € ([0,6:] \ R(§)) x R x (T; N S"7)
provided that 1 < j < Ny, 1 <k <r(j) and m(j, k) = 3.

PROOF. Since

m(j,k)

(k)1 (t, 7, & pF) Z T, €)?
1f1<]<N0,1<k<r()andm(y,k‘)onr?),

(2.18) and Lemma 2.5 of [11] with r = m(j, k) prove the assertion (i). Let
us prove the assertion (ii). Assume that 1 < j < Ny, 1 < k < r(j) and
m(7, k) = 3, and put

£(t,7.) = sub o (PPR)(1,7,6) = 2021 (1,m. )( — (o} (1,€)/3)")

Note that c‘ﬁq{"k(t, 7,€) does not depend on 7. f(t,7,&) is a polynomial of T
of degree 1 and positively homogeneous of degree 1 in (7,£). Then we can
prove that, with some C7,Cy > 0,

(2.31) min win [t — s (7,8 < Ciba (8,7, & p7*)Y?
for (t,7,€) €[0,0,] x R x (T; nS"™h)
if and only if
min{ min [t — sf*, LH/(t, —ai"(t,€)/3,€)]
< Cyhy(t, —al(t,€)/3,& P2 for (t,€) € [0,01] x (T; N.S™1).
Indeed, we have

FE7,8) = f(t,—al™(t.£)/3.6) + (T + al*(t.£) /3)0, f (£, 7, )
= f(t,—al™(t,€)/3,€) + O(h(t, 7, & p"")/?).
By (2.4) of [11] we have

hi(t, 7 &p") < hl(mw Z]’f“)m&
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We have also

— @, 0)/3 = 3P0 07, 8) — Sl (6,6 D - N4 (1,0)

V3

+ 15 (@ (.93 = " (6. 0) P (1. 6) - V(17 )

024t (t.7.€)(7* — (af(1.6)/3)") = gazq'fw, O,
Ol (b7, &)1,

Since A . ’
f(ta _a%k(u 5)/?)’ f) = SUb2 O-(ijk)(ta _a{’k<t7 5)/37 g)a
(2.19), (2.31) and Lemma 2.5 of [11] with r = 2 prove the assertion (ii). O

We assume that the hypotheses of Theorem 1.2 are fulfilled. Now let us
repeat the same arguments as in §2 and §4 of [11]. Assume that 1 < j < N
and 1 < k <r(j). It is easy to see that

(7= NM(.) 0 PP (1,7, ) = (1,7, ) — 200, (1,7,8)

; , , . 1 :

=5 2 008 = N 9) - pl(t 7, €) = 500 (1 7€)
p#l

for 1 <1< 3and (t,7,€) €[0,6] x R xT; with [¢] > 1

if m(j,k) = 3. So we have
(2.32) (= N"(t,) o Pt 7€)
= P4 7,€) — 200 (1,7, ) — 0ROt 7, 6)

LS A~ M€ -7 6)
oAl

— éaf{(A{”“(t, €)= N (,€)) + (N (1, €) — A (1,€))}
for 1 <1< 3and (t,7,€) € [0,6] x R x [; with [¢] > 1
if m(j, k) = 3, where {l, u, v} = {1,2,3}. We have also
(1= X" (t,€) o pl"(t,7,€)
= (8, 7,€) — 00 (1,7,€) — SO €) — MKt ©))
for | = 1,2 and (t,7,€) € [0,6,] x R x T'; with |¢] > 1
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if m(j, k) = 2, where {l, u} = {1, 2} Moreover, we have
233) (=N ot )

Pik(t,7,€) — %at(ké”k(”@,é) -3 @9)

Mw

1

if m(j, k) =3,1=1,2, (t,7,€) €[0,61] x R x Ty, |¢] > 1 and {I, u} = {1,2}.

N
I

(I) Let consider the case where 1 < k < Ny, 1 < k < r(j) and m(j, k) = 3.
Define

WLED) = Y (O - O+ D

SER(E/1€NN[0,61+1]

+ ) @16 = A (.€)) + 112

1<l<u<3
X AR, €) = MR €))2 + 1372 4 1,
Wik (¢, €)
= Z 07N (£,€) — MR )10 (NF (£,€) — MR, €)) + 1)

1<l<p<3

+10, Ot €) = MO, NIVt €) — NVt )+ 1)
N (€)= / (Wi(s,€:7) + Wi(s,€)) ds

0

for (t,€) € [0,61] x (T; \ N9F) with |¢] > 1 and v > 1, where NV* =
No(p) UNL(pP W) U {0} and (€), = (v* + [€*)Y/2. Tt follows from Lemma
2.2, Lemma 2.4 of [11] and Theorem 1 of [9] that there is Cy > 0 satisfying

(2.34) 0 < APR(t, &) < Co(log(€), + 1)
for (t,£) € [0,61] x (T; \ V%) and v > 1. For (t,&) € [0,d,] x (T; \ N7FK)
with [¢] > 1, A > 1 and v(t, &) € C?([0,61]; L=(R™)) we define

3

EPR(t, &0y, A) = Y e MNP

=1
2
. _ .’k 7k1 .’ _ ‘7k:
+ ) W &) 2 AN P o2 4 W, € y) e A o,
=1

where A% = Ak(t &), PR = PRt Dy, €) and p*Y = p* V(¢ D, ).
Then we have

(2.35)  DyEME(t, & v, A)
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3 —7
=i S AN AP 4 2 Tmfe N (D,PI*) - (P
=1

2
+i S IAWGS)2ALE — 2WgFWF e A0 gDy 2

=1
+2Im{(W)?e= N (D™ ) - (9" 0)})
+l(AWEFV AL — AW PR e AN o]
+ 2Im{(WEH) e N (D) - v},
where AJ* = 9,A7*(t, &;~) and Wi,* = 9,W{*(t, &;~). Since the AJ*(t,€) and
the )\{k (t,€) are real-valued, it follows from (2.32) and (2.33) that
(236)  Tm{e™*"(D/P}*v) - (P)*v)}
= Tm{e=*N" (D, — N*YP*0) - (PF0)}
= Imfe Y (= 2 (@00t D)) - (PIF0)}
— Im{e™ " ((9702p"*)(t, Dy, €)v) - (P}*)}/6
—Re{e SO = N W) - (PP |2

p#l
_ ik . e
—tm{e ST - Mo - (PR /6,
u#l

(237) (WGP (D" Vo) - (o)}
— Im{(Wj,k)Q —AAJJV((D . )\j,k(l))p{,k(l)v) . (p?}k(l)v)}

—Zlm{ (Wt )Pe 0 (ko) - (o)}

— 3Re{(— 1) (WFH)2e= AN AV _ \JEDY, L (piF D)y 9
(2.38)  Im{(Wi*)*e *M*(Dw) - v}

2
S G )
=1

where X% = N*(¢,€), Xi¥ = ON"(t.€), Ny = 02N (¢, €), ol = plh(t, Dy,
¢) and so forth. Put
fo(t,€) = PP(t, Dy & e)o(t, ),
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1

Ft &) =D g (T, &) +r(t T )

=0

and write

" (t,7,) + k(L 7, &) Zﬁ (t,&e)
PE(t, &) = By (8,€) + Bl (t 6;6),

where Bif(t,f) € Sié“([(),él] x (T; \ {0})) is positively homogeneous of
degree (—1+1) in & and ﬁi’f(t,f; e) € Spo7([0,61] x (T;\ {0})) uniformly in
e (1=0,1,2). Note that

2

a8 =Y Byt

=0
Since
0 (t, &)
< WEHE &7 (WEH (&) + V2IWPE(,€)) < 2WF(t, &) AT (2, &),
pj7k(t7 Dt7 f)v(t, f) = Pj’k(t’ Dt7 57 E),U - qu(ta Dt7 §7 E),U
= fs(t: 5) - qucva
(2.35) — (2.38) yield
DEVE(t, & 03y, A) < B(APF) e M (2, €)
3
=S [(A— azhe

_ (szk)flefAAj»k

(¢ + £ (00.5%) + (000

— (A re Zw — NI /44 (W42 (ol /36}
u#l

2
—(A=10 Zwﬂk Ajk —AAJ’“ka(l) |
=1

+ 202 "“A”{ZW’“ * + (Wﬂ’f) GO = PO}

=1
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_(A_lg)(W]k)4AJk — AN | ‘2+Z ij A]k) 1 7AAJk‘ ] ?}‘ /6

=1

where (9,0,p"*) = (8,0.p"%)(¢t, Dy, €), - - - . First assume that (¢,£) € [0,6;] x
(T \NF9), €] > v > 1 and

2.39 min{ min |[t—s|, 1} < 2/3,
(2:39) {_min_t=s].1} < (67

Then we have .
W, &) > (€23 /V2.

So we have, with some C > 0,

(Ajk) 1 fAAJk

(@ + £ (@00 + 2 (GFR )|

< C<A¥”“>‘le“““’k{2 P+ SO O + W+ o}
=1 =1

3 2
< ONFe ST PP S el + (WP}
=1 =1

since there are ¢*(t,&;¢) € SV ([0,01] x (T; \ {0})) ( p = 0,1,2) uniformly
in ¢ satisfying

T ) + 2007 6) + 3628%3"% m¢)

[\

= Rt ge ZP (t,7,6) + I (t,& e Z V(7,6 + gt & e).

Note that there is C' > 0 such that
INE(€)| < Ol¢] for 1 <1< 3and (t&) € 0,6] xT; with [€] > 1

(' see, e.g., Theorem 1 of [9]). Then it follows from (4.11) of [11] that, with
C >0,

(APF) RS INGE — NP pEol /4 + (W) [wf?/36}
p#l
S CAg,kefAAJak{Z W]k ‘p; /0‘2 + (Woj,k)4’,l}’2} ( 1 S l S 3)’
pn=1

2<W3*’“>2<Az”“>*le*“"“{Z [Pkl + 9D — \HO R/

p=1
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2

3
< ONte SRR+ O 3 I

,u:l :

Therefore, there is Ag > 0 satisfying
(2.40) OEM (1,6 037, A) < 3|f:(t,€)I°

for e € (0,1] and A > Ay if (2.39) is satisfied. Next assume that (¢,¢) €
[0,0:] x (T \NV*), J¢] = v = 1 and

min{ min |t—s|, 1} > 2/3,
{ER(S/KI)’ 1 <>

Then we have

2.41 Wk (t V2 min min t—s, 17!
(2.41) (0672 (Fmin{_ win o= s],1)

Operating 92 in the both sides of (2.28), we have

3
(2.42) 02sub o (PPF)(t,7,€) = O2q)"(t, 7.€) =2 B (t,€).

Since

00-p" (1,7, €) = = Y N (1,6),
p#l
Z 0:0.p7" (1, 7,€)

= 9,02k (t,7,€) = 20,al" - —QZ PV

0,0, p (¢, 7, €) — 0,07 (t,7,€) /3 = — Z(Af;f(t, §) — X (t,€))/3,

p#l

T = Z '(t,7,€)/6 — al*(t,€)/3,

Zplﬂk(t; T, f) = anng(tv T, 5) - %8t672'p]7k(t7 7 g)
=1

= 372+ 20} (1, )7 + ¥ (t,€) — z’ataW £:9),

T —ZP (t,7,€)/3 — at"(t,€) Z (/9
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+2(ar"(4,6)/3) + 007" (1, €)/3 = a3 (1, €)/3,
(2.20), (2.27), (2.42) and Lemma 2.6 give
AT 62) + S0P (T €) + SR (T )

= sub o(P"F)(t,7,&) + @F(t, 7, &) + ri*(t, 7,6 ¢) + é@f@fpj’k(t, 7,§)
: . 1 .
; B TP (1,7, ) + 500,51 (7,) — 3002 (1,7, )

+ 1283 “(t,7.€) - 0O (7€) + @ (1,7 6)

+ Loporpikr ) + Bt & )T + BTt & o) + BY (L, & )

A O{ P68 - £ 00 ) - Nk}

NgEN

=1 u#l
3
+ sub® o (PP (t,7,€) + BYY (¢, € e){Z Pt T, €)/3
=1
2
— ai®™ () Zp{’k(l)(t, 7,€)/9 + 2(al*(-)/3)* — a}*(-)/3
=1

+ il (t, ) /3}

+Bualt Ee {Z P07, €)/6 = ol (/3] + B 6 2)
(B17(E,€) + B (8, & 2) /3)PI (8, 7, €)

~ 52 I OO — X 0.6)

1 p#l

+Z{b§,’i<t,£> (€5 ) /6 — BIN(E & 2)al® (4, €)/93p M (¢, €)

Mw

l

Il
®| . =

+ Rt & e),

where
(€ 2) = B86(1 )t (1)
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+ B (1 &) (a1 (1,€)/3)" — a3 (1,€) /3 + 10101 (£, €)/3)
— Bt & e)ai" (1,€) /3 + BN (L, & €)
€ SLO([O, 61] x (T;\ {0})) uniformly in (€ (0,1)).

By (2.29), (2.30), (2.41) and (4.11) of [11] there is C' > 0 such that
(NP W (@ 4 L0007 + 5 (G0

< CAS*e —AA”{Z [P Fof? + Z WERIpE o2+ (W) ol |
I=1
for (¢,€) € [0,6,] x (T \/\/Jk) with |£] > 1 and ¢ € (0, 1],

since
25 (€ < CWEH(t,67) (v=1,2),
(N (£,€) = M (8,€))v)?
< Wé’k(t,ﬁ;v)Q(IAf;’k(t,é) — N O+ 1)[v)?
< Wi, &) (8, Dy, €) — pzy(t Dy, &))of* + |v]?)

< 2WGH(t,£7) (Z| POl 4 ol?),

where {l, u, v} = {1,2,3}. Similarly, we have, with C' > 0,
3
(APF) e MM N N T INGE = AP {Ipliu /4 + (W72 (o] /36}
=1 p#l

3
< AP MNEN TN N = NP Dol /4 + (W3 o) /36)

=1 p#l
3
< OV {3 [PIR 4 (Wh? D PO (WP,
=1
j ke ey —1 _—AATK i,k k(1 k
(WEF2(AJF) e 20" (W F)2 N ”—Az 12 Jol?

2
=1

since
O3 = X bl = [P0 = Piko+ S04 = 3ol
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< 3{|PPRof? + [PIR 4+ 2(W3)? (Z\ P o9+ o) §,

k(1 k(1 ik
(G €Oy = () — Ry /3,

Therefore, modifying Ay if necessary, we can see that (2.40) holds for (¢,§) €
[0,61] x (T; \ NV7*) with [¢] > 1, e € (0,1] and A > Ay. This gives

t
(2.43) EVR (L, & v, A) < EPF(0,& 037, A) +3/ |fe(s,8)]? ds
0
if A> Ay, (t,€) €[0,6] x (T; \N?¥), |¢] > > 1 and ¢ € (0,1]. We note
that Ay and Cp in (2.34) depend on PP*(t, 1, &;€).
LEMMA 2.7. Assume that 1 < j < Ng, 1 < k < r(j) and m(j,k) = 3.
Then there are ¢ > 0 and C4 > 0 such that

2
€M (1, & 037, A) < Y (77Dt €)F < Cal€)yHOEN(t, & 07, A)
1=0
for (t,€) € [0,61] x (T; \ NoK) with |¢] > v > 1, ¢ € (0,1] and v €
C2([0,0:]; L*(R™)).

PROOF. We can write

3

D2u(t,€) = % S Pt Dy €)1, €)

=1

1 .
- alt, DL, €) + 50l (1.€) - v(t,€),
=0

where |¢;(¢,€)| < C|€[*7!. Similarly, we have

2

Dtv(ta f) = % Zp?k(l)(t? Dt7 é)l}(t, f) + dj,k(tv f)v(t, 5),

=1
where |d*(t,€)| < C€|. Therefore, we have

2

> (65Dt €

=0

3 2
< Cal)ar A AN ST PIRU[R 1 S (WE 2 o + (WEH) o}
=1 =1
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< CA()FTACEI(t, &5 07, A).

It is obvious that, with C' > 0,

2

EVR(E, & vy, A) < CY (O Dyo(t, )P,

1=0
since Wik (t, &) < C(fﬁ/g- -

LEMMA 2.8. Assume that 1 < j < Ny, 1 < k < r(j) and m(j,k) = 3.

Then for p € N with 1 > 2 and k € R there are vj, > 0 and C,, > 0 such
that

I

(2.44) Z 2,u+2n 2l|Dl (t £)|

=0

< C {Z 2u+25+4+1/]k Ql‘(Dl )(0 5),

[ ()R pik(s D, €5 e)u(s, €)[ ds

[\

+ (P DLPIA 1, Dy, 2ot € |

for (t,€) € [0,81] x (T; \ N9K) with |§] > v > 1, e € (0,1] and v €
C([0,8,); L=(R™)), where Y10+ = 0 when p = 2 and the v;, do not
depend on .

PrROOF. From (2.43) with A = Ay and Lemma 2.7 with A = A, it follows
that (2.44) is valid for p = 2 if v;;, > ApCp. Let M > 2, and assume that
(2.44) is valid for p = M. Then we have

M+41

(2.45) D (€M Dl (¢, €)|
=0
2

< O D(@3M T (Dl (0, )

=0

()RR ik ik (s D, € e)u(s, €)[? ds

+
WT\CN’F

3

£ QO DIPIN L, Dy € ot ) |
l

Il
o
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+ ()3 [DM (€I

for (t,£) € [0,61] x (T; \ N7*) with |¢] > v > 1, e € (0,1] and v €
C*([0,41]; L>(R™)). On the other hand, we have
2 . .
Dio(t,&) = = ay® (t, &) Djo(t, &) + PP*(t, Dy, & e)o(t, §),
1=0

where Pi#(t, 7.6 ¢) = 7% + 320 al(t,& ). By induction we can easily
show that for h € Z, there are symbols aj’y' (¢, &; 8)_6 STEMH(0, 6] % (T \
{0}) (1=0,1,2) and b}/ (t, & ¢) € Si51([0,61] x (T; \ {0})) uniformly in
€ (0,1] (0 <1< h) satisfying
2

D¥thy(t,€) :Za%ltstl (t,€)

=
h

+ 3 0L, & ) DIPE(t, Dy, €5 €)u(t, ).
=0

This, with (2.44) for p = 2 and (2.45), proves that (2.44) is valid for p =
M+ 1. [

(IT) Next consider the case where 1 < j < Ny, 1 < k < r(j) and m(j, k) =
2. Define

Wik & = Y @Y=, + DT,

sER(E/1E)NI0,61]

WEk(,€) = |00 (1,€) — M (D /(INE (8, €) — MM (1,€)] + 1),
NIH(t, ) = / (Wo(s,€:7) + Wis, €)) ds

for (¢,€) € [0,81] x (T; \N?) with [¢] > 1 and v > 1, where N'* = Ny (p)U{0}.
Similarly, we have

OV (2,6 7)] < WEH(E &),

0 < AM(t,69) < Collog(€), +1)
for (¢,€) € [0,61] x (T; \ N9) with |¢] > 1, where Cy > 0. For (t,§) €
[0,0,] x (T; \ NV?) with |¢] > 1, A > 1 and v(t,€) € CL([0,6,]; L>(R™)) we
define

2

EPR(t G vy, A) =Y e MM pl o+ W, € 9) e N o,

=1
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where A7* = AJk(t &: ) and p* = p/*(t, D, €). Then we have
D&V (L, & 057, A)
2 B
= @Z AA{’ke_AA]’k|pg’kv|2 +2i Im{e_AAJ’k(Dtplj’kv) - (p*v)}
=1
(AN (WERY2 = aWERWER) e AN 2
+ 20 Im{ (W) 2e= A0 "(Dy) - v},
where AM" = ONK(t, &), WI* = WIH(t,69) and W = W55 (¢, 69).
Put
fs(tv g) = Pij(ta Dt7 57 g)v(ta 5)
PPt 7,6 0) = PR T, €) + P (8, €) + 1R, T, 6 ),

where ¢7*(t,7,€) € 814([0, 1] x (T;\N?)) is positively homogeneous of degree

1for |€] > 1and ri*(t, 7,&5¢€) € 8117’0_1([0, 61] % (T;\N?)) uniformly in . Then
we have

(2.46)  9E(t,& 05, A)

2

Jik —AAJ ’“ ik, 12
< — E AN ol
=1

= 20m{e ™ (D, = Mo (o 0)}]
— (AN VR = 2003 ) y e o

2
_ Im{<Wg,k>2€—A/\m Zp{,kv ) @}
!

< AN - (7 3N
=1
= 304 (sub o(P)(t, D1 6)
+ (1) 5004 = Mol
— 3 ol
— (AN WG = 2(WH)* e o

2
+ (Ag’k)_l(Wg’k)2€_AA] k Z ’pg,k:,U’Q + §Ag7k(Wg,k)2€ ANTR ’0‘2
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2
< 2(AF) e AN £ - > (A- AN e AN k|
=1
+12(A%) e sub o (P7F o)
+ 3(APF) L AN E = M )0f? 4 6(AJF) e AN iy 2
— (A = 5/2)APF(WF)2e 20 y)?
since
(r = N*(t,€) op* (¢, 7,€)
= PPkt 1, &) — @R (t, 7, &) — 7R (t, 7, & €) — i0pl " (t, 7, €),
- Zatp?k(ta T, g) = (_1)l§at()\{7k(t> 5) - )\J27k(t7 S)) - EatanLk(t? T, S)
(1=1,2),

where p/* = pl*(t, Dy, €), XF = X*(t,€), sub a(P7*) = sub o(P?*)(t, Dy, €),
NF = 9N (t,€) and so forth. Tt is easy to see that

2
(247) | (1,€) = Mor (1,)u(t, )P < 4T Y [pl ol® + 2(AF o],

=1
2
(248)  [194(t, Dy & )o(t, O < LIl Y I ol + o}
=1
for (¢,€) € 10,6,] x (T; \ V) with [¢] > 1 and € € (0, 1],
where C' > 0. First assume that

2.49 min min t—s|, 1} < (&)7V2
(2.49) {sen(f/mm[o,mu‘ b1y < (6,

Then we have '

Wik, &) = (©Y2 V2.
Therefore, there is Ag > 0 satisfying
(2.50) OEMM(t, €503y, A) < 2| (¢, €)°

for (£,€) € [0,61] x (T; \ N°) with |¢] > 1, € € (0,1] and A > Aq if (2.49) is

satisfied. Next assume that

min min t— sl 1} > (6)71/2,
SER(E/1€1)NI0,61+1] 1} > <§“>W
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Then we have

Wk (t V2 t— s, 1)1
(t,67) 2 (V2min{ _ min - E=sl1b)
Lemma 2.6 (i) and (2.46) — (2.48) prove that (2.50) is valid for (¢,§) €
[0,01] x (T; \ N?) with |{] > 1, ¢ € (0,1] and A > A, with a modification
of Ay if necessary. Repeating the same argument as in Lemma 2.8, we have
the following

LEMMA 2.9. Assume that 1 < j < Ny, 1 < k < r(j) and m(j, k) = 2.
Then for p € N and k € R there are vj, > 0 and C,, > 0 such that

m

> (€2 D (t, €))7

=0
1

< 3@ (D) 0,6)

[ ()RR pik(s D, &5 e)u(s, €)[ ds

o~
N I
~+~ O

-2

+
=

()24 DLPI¥ (1, D, & ot )}

N
Il
o

for (t,€) € [0,61] x (T; \ N?) wzth &l > v > 1, e € (0,1] and v €
C*>([0,41]; L>=(R™)), where Sl o = 0 when p = 1 and the v do not
depend on .

(ITII) Now consider the case where 1 < j < Ny, 1 < k < r(j) and
m(j, k) = 1. Define
EVM(E, & vy A) = e Mo(t, &)
for (t,€) € [0,61] x T; with [¢] > 1, A > 1 and v(t,€) € C([0,6,]; L>=(R™)).
Then we have
Dy EPM(t, & 03 A) = iAe” M |o(t, &) P + 2i Im{e”4'p™*u - v},

where p/F = pik(t, Dy, €) (= Dy — M¥(t,€)). Applying the same argument as
in the proof of Lemma 2.8, we can prove the following

LEMMA 2.10. Assume that 1 < j < Np, 1 < k < r(j) and m(j, k) = 1.
Then for p € Zy and k € R there is C), > 0 such that

I

D (2 Dy (t, )P < Cuf (€)1 [v(0,€))

=0
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t

+ [ (2 PP (s, Dy, & e)u(s, &) ds

T o~

1

(&) 2m=2=2 DLPIk (¢, Dy, & e)u(t, €)1}

+

=

o

for (t,€) € [0,01] x I'; with [§] > v > 1, € € (0,1] and v € C>([0,0,]; L*
(R™)), where S -+ =0 when = 0.

Let f(t,x) € C*(R;S(RY)) satisfy supp f C {(t,z) € R x R"; t > 0},
and consider the Cauchy problem

{P(t, Dy, Dy)u(t,z) = f(t, ),

(CP) u(t, x)|t<o = 0.

Put

7j—1
I=Ty, L;=T;\JI (2<j<N),
=1

N =] U NP%) U Ny (p) U {0}.

J=1 1<k<r(j), m(ik)=3

Let vo(t,&;¢) € C°(R; S(RE)) satisfy vo(t,§;¢)]i<o = 0, and define

Uk+1(t>f§5) = pj’r(j)fk(@ Dt,f;5)vk(taf§€)
forlgjSNg,fefj\NandOSkSr(j)—l.

Then it follows from Lemmas 2.8 —2.10 that for 1 < j < Ny, 0 < k < r(j)—1,
H Z m(]7r<j) - k)? K€ R7 8 Z 1 and (t7§) S [0751] X (FJ \N)

12 t
> / (&)22=2 DLy (s, & ¢)|* ds
1=0 0

—m(j,r(5)—k
L GrOE) -
= Y Z <€>7 ’DsUkJrl(S?fvg)’ dS,
1=0 0

where C,, > 0, 7, = 0if m(j,r(j) — k) =1 and 7, = v;,j)—r if m(j,7(j) —
k) =2 or 3. This yields

I t
> / (&) 2=2 DLy (s, & €)[* ds
1=0 0
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p—m g
<,y / ()22 27| DLy (s, ;) 2
=0

for 1 <j<Np,pu>m,keR,yv>1and (t,€) € [0,6] x (T; \ V), where
C, > 0 and 7 = max <j<n, (Pj0 + Uj1 + -+ + Ujr(j)—1). By (2.4) we can see
that there are C' >0 and Cy >0 ( N =0,1,2,---) satisfying

e Dl )2 ds
>
<C / (€)2m 47| P(s, Dy, & e)u(s, €)[* ds
" m—1 t
+CNZ/ <§>’2ym+2m—2l—N|Div(S7£)|2 ds
1=0 V0

fork e R, v > 1, (t,€) € [0,6,] x (R*\ N) and N =0,1,2,---. Therefore,
taking 9 = 2C and modifying v if necessary, we have

> ()2 Dlo(s, ) d
=0

<20 [P (s, D, € 2ot O s
0

for v(t,§) € O*(R;S(RE)) with v(t,&)|i<o = 0 if & € R, (t,£) € [0,61] x
(R*\ N), € € (0,1] and |¢| > v > 7. Noting that P(t,7,&¢) — 7™ €
ST ~ PR x R") uniformly in ¢, similarly we can prove the following

LEMMA 2.11. There are C, > 0 ( > m) such that

H t
Z/O <§>i“+2”_21|Div(s,§)|2 ds
1=0

p—m g
<CY [ DLPG, D g, O ds
1=0

forp>m, k € R, v(t,§) € C*(R;S(RE)) with v(t,§)|ico = 0, (,§) €
[0,01] x (R \ N) with |¢] >~ >0 and e € (0,1].
(IV) Let us derive energy estimates for || < . Define

1
0t & vy, A) = ) e M D (¢, €)
!

3

Il
o
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for (¢,€) € [0,01] x R™ with || < and v(t,§) € C™([0,61]; L=°(R™)), where
A >1and v > 7. Then we have

m—1
D&t & viy, A) = Y iAe (&2 Do (t, &)
=0
_ m—2 _
+ 2ie” M Im{D}"v - (D" 'o)} + ) 20(€)2m e~ Im{ Dy "'v - (Dv)}.

=0

Since P(t,7,&;e)—1™ € STO_l’l(R x R™) uniformly in ¢, there is Cy > 0 such
that
O,E0(t, & vy, A) < 4A e M| P(t, Dy, & €)v(t, &)
it A> Cyy and |£| < . This yields
1

3

(€5 Dy (t, €)

~
o

m—1

t
< C {2 DO OF + [ (OFIP(s, Dol P ds)
1=0 0

for (¢,€) € [0,d1] x R™ with [£| < v, e € (0,1] and v(t,&) € C™([0, d1]; L™
(R™)), where C., is a positive constant depending on . Similarly, for p >
m — 1 there are C,,, > 0 ( x> m — 1) such that

D@ Dj(n, )

=0

-1

< o { Y102 (D) 0, 6) P
l

3

I
<)

t

()22 P(s, Dy, & e)u(s, €)|* ds

+
S—

n—m

> (A DIP(t, Dy, 2ot € |

1=0

for (t,€) € [0,6;] x R™ with |¢] < v, € € (0,1] and v(t,£) € C™([0, 61]; L™
(R™)), where Zz;lo -+- = 0. This, together with Lemmas 2.8 — 2.11, yields
the following

+

LEMMA 2.12. There are v9 > 1, C, ., > 0 (v > v, £ > m) and vy > 0
such that

(251) Y (D)™ Diult, )72 0.5,)x
=0

=
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pn—m

<O Z (D)t DL P(t, Dy, Dys €)ul(t, )12 (0,5, xrr)
1=0
if p>m, v >, e €(0,1] and u(t,z) € C°(R; H*(R™)) with u(t, z)|t<o =
0. Here H*(R") denotes the Sobolev space of order s and H®(R™) = Nser H*
(R™) and

1/2
£t Do = ([ ISt dtd)

[0,(51]><Rn
REMARK. (2.51) is valid, replacing P(t, Dy, D,;¢) by P(t, Dy, D,,).

Let f(t,z) € C=(]0,00); H*(R™)) satisfy (D]f)(0,z) = 0 for j € Z,.
Then, it follows from the unique existence theorem for ordinary differen-
tial equations and the proof of Lemma 2.12 with P(¢, D, D,;¢) replaced by
P(t, Dy, D,) that the Cauchy problem

(CP) P(t, D, DJu(t,) = f(t.x) in [0,6,] x R,
Dzu(t>$)|t:0 = UJ(.CE) in R" ( 0 S] <m— 1)

has a unique solution u(t,z) € C*([0,6,]; H*(R")). We note that (CP),
has a unique solution u(t,z) € C*([0,0:]; H*(R"™)) even if P(t, Dy, D,) is
replaced by P(t, Dy, Dy;¢).

LEMMA 2.13. Let u € C*°((—o00,01] x R"™) satisfy u(t,x)|i<o = 0, and let
(to, ) € [0,61] x R™. Then (ty,z°) ¢ suppu if

(2.52) K

(to,a0)

Nsupp P(t, Dy, D)u = 0.

PROOF. We extend u(t, ) to a function in C*°(R"™). Choose R > 0 so
that

K20 C{(t,2) €[0,01] x R"; [z < R}.

Assume that (2.52) is valid. Let ©(t) be a function in £1%0}(R) satisfying

{ if + < 3/2,

if ¢ > 2.
Put
Fg(t,x) = O(|z| = R)P(t, Dy, Dy)u(t, x) + [P, ©(|z| — R)Ju(t, z),
where [A, B] = AB — BA. Then we have
P(t, Dy, D,)(O(|z| — R)u(t,x)) = Fgr(t, ).
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Note that Fgr(t,z)|i<o = 0. It is easy to see that there is a unique solution
vr(t,z) € C®((—o00,01]; H*(R™) satisfying

(CP),, {P(t,Dt,DI)UR(t,x) = Fp(t,r) in (—o0,d;] x R™,

UR(tvx)’t<0 = 0.

Therefore, we have vg(t,z) = O(|z] — R)u(t,z) for t € (—o0,0;]. Choose
p'(t) € EFI(R) and p*(z) € EF}(R") so that p'(t) >0, [7 p'(t)dt =1,
suppp' C {t € R; 0 <t < 1}, p*(x) >0, [g. p"(x)dz =1, suppp” C {z €
R"; || < 1}. Here we say that f(z) € EF(R") if for any T > 0 there are
h > 0 and Cp > 0 satisfying

102 f(x)| < Crhll(Jafl)* for a € (Z4)" and z € R™ with |z| < T.

For € > 0 we define
Fre(t,x) = / pi(t — s)p2(x — y) Fr(s,y) dsdy,
Rn+1

for (t,z) € R™™! where pl(t) = e 'p(t/e) and p"(z) = e"p"(x/e). Then
we have Fr(t,z) € EFH(R™1) and

supp Fr.(t,z) C {(t,x) e R"™; t >0 and |z| < R+2+¢}.
Moreover, we have
Fr.(t,x) — Fg(t,z) in C*(R;CP(R™)) ase |0
It follows from [8] that the Cauchy problem

P(t,D;, D,; (t,x) = Fr.(t, in R"+!,
(CP)R,a { (t, Dy, e)vpe(t, x) re(t,x) in

VRre(t, 7)]i<co =0

has a unique solution vg (¢, z) in £} (R™1) and that (¢, 2°) ¢ suppvg.
if supp Fre N K(; L0y = (). More precisely, we have

suppuvge C {(t,z) e R x R"; (t,x) € K&y) for some (s,y) € supp Fr.}.

For e,¢’ € (0,1] with &’ < e we put wr. o (t,2) = Vg(t, ) —vr(t,2). Then
we have

P(t, Dta Da:v €)wR,6,5/(t7 $) = FR,E(t7 .’ﬂ) - FR,E/(t> .CC)
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37 (galtse) = agalt; €)D" Devg ot ).

J=3 |a|<j—3

Applying Lemma 2.12 we can see that there are C, > 0 ( u > m) satisfying

m
(2.53) Z (D)ot Diwpe.er(t, )| 72 0,501
=0

pn—m

S Cu{z (D)5~ Dy(Fre(t, @) = Frer(t, 2) | 22(0.5,)xm)
=0

+ sup  |Df(ajs(tse’) — ayp(tse))f?
[BI<j—3,h<p—m

n—m
X D (Dt =120 Dl B (,2) 3o e |
=0

for 4 € N with © > m and k € R. Indeed, we also apllied Lemma 2.12 to
vge (t,z) in order to obtain (2.53). (2.53) yields

VRe(t,x) = vp(t,z) in C*([0,6]; H°(R")) as € ] 0,
supp vg N (—o0, d1]
C {(t,x) € [0,01] x R"; (t,x) € K(t,,y) for some (s,y) € supp Fr}.

Since
3
supp[P, O(|z| — R)Ju(t,x) C {(t,z) € [0,00) x R"; R+ 5= x| < R+ 2},

we have
K(;MO) Nsupp Fr = 0,

which proves (g, 2") ¢ suppvg and the lemma. O

For f(t,x) € C®(R") with f(t,7)|t<o = 0 we consider

(cpy, {P(t, Dy, Dy)u(t,x) = f(t,z) in (—o00,d] x R™,
u(t, x)|t<o = 0.

Put fr(t,z) = O(|z| — R)f(t,x) for R > 0, and let ug(t,x) be a solution to
(CP); with f(t,z) replaced by fr(t,z). Then we have

P(t, Dy, D) (up (t, 2) — ug(t, ) = (O(|x| = R) = (x| = R))f(t, 2),
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where R’ > R > 0. Define

1451 = sup |>‘J(ta€)|7
te[0,61],1<5<m
gesnt

Ks, = {(t,r) € R""; ¢ > |z|/M;,}.
It is easy to see that
K(, 0 0[0,61] x R™ C {(to, ")} + K,
Lemma 2.13 implies that
Urtsy 5, (t,T) = Upiysian, (E) if £ <6y and 2| <R < R
Therefore, we can define wu(t, z) by

u(t, x) = upssm;, (t,) fort <dp and |z] < R,

and u(t,x) (€ C®((—o0,d;] x R™)) satisfies (CP),. Repeating the same
argument as at the end of §2.3 of [12], we can construct solutions to the
Cauchy problem (CP) with [0, co) x R™ replaced by [0, §;] x R™ when f(t,z) €
C>([0,00) x R™) and u;(z) € C*(R™) (0 < j < m—1), and finally we can
complete the proof of Theorem 1.2.

3. Proof of Theorems 1.3 and 1.4

In this section we assume that the conditions (A), (H) and (T) are sat-
isfied, and we shall give the proofs of Theorems 1.3 and 1.4, applying the
arguments as in [4] ( see, also, [13]).

3.1. Preliminaries

Fix j so that 1 < j < Ny. For (t,€) € [0,8;] x (T \ {0}) we write

P T =P (T — ol (1:9)/3,8) = 7 = a1 O + a3t (1,€)
if 1 <k <r(y) and m(j,k) =3,

PR T € = (T - 0l (£:9)/2,8) = 7 = a3t (1)
if 1 <k <r(j) and m(j, k) =2.

Then we have
ay*(t,€) = al*(t,€)%/3 — a}"(t,€) (= 0),
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" (t,€) = 2a"(¢,£)° /27 — al*(t,€)ad" (£, ) /3 + af"(t,€)
if 1 <k‘<7’j) and m(j, k) = 3,

(
ab"(t,€) = at" (1, )" /4 — a"(1,€)
if1<k< r(j) and m(j, k) = 2.

Until the end of the proof of Lemma 3.3 we omit the subscript j and the

superscript j of [';, PP*(.), pP*(-), -+, and “j” of r(j), m(j, k), --- and
so forth, again. Namely, we write I';, P7*(.), p“"(~), r(j), m(j, k), -+ as
L, P*(.), p*(-), v, m(k), ---, respectively. By (2.3) and the factorization

theorem we have
P(t,1,6) = PY(t,7,&) o P*(t,7,&) 0--- 0 P"(t,7,&) + R(t, ,€)
for (¢,€) € [0,6,] x T with |¢] > 1, where
PH(t,7,€) = p*(t, 7€) + 4 (8, 7,€) + ¢ (£, 7,€) +r"(t, 7€),

gk (t,7,€) € Sﬁ)(k)fl’fl([(), 51]x (T\{0})) (1 = 0,1) are positively homogeneous
of degree (m(k)—1—1) in (7,&) for [£] > 1 and 7%(¢, 7, €) € Sfo(k)*l’ﬂ([(), 91 X
(T\ {0})) ( 1<k <r)and R(t,7,€) € S{y " ([0,81] x (T'\ {0})). More-
over, the 7¥(t, 7, &) are classical symbols, i.e., there are symbols rf (¢, 7,€) €
S%k)_l’_Q_l([O, 61 x (T\{0})) (1 € Z,) such that the rf(t, 7, €) are positively
homogeneous of degree (m(k) —3 —1{) in (7,£) for |{] > 1 and

(3.1) () = Dt €) € ST T TTN((0,61] x (T {0})

(N=1,2,---).

=

N
Il
o

We write
Rt 7, €) ~ Zrl (t,7,6) in S TH([0,61] x (T {0}))

if (3.1) is valid. We also write

837 ([0,01] x (T\A{0})) ={a(t, 7,€) € ST3"([0,01] x (T'\ {0}));

a(t,7,€) is a classical symbol}.

Define



g (t, 7€) = (=)W g (1 =, =€) (1=0,1)
for (t,7,€) € [0,0,] x R x (=T \ {0}).

Moreover, we define 7(¢, 7, €) € Sé?(k)fl’fz([o, 61] x (=I'\ {0})) so that

(3.2) F(t,7,8) ~ Z Rt -1, =€)
in S7Y7172([0,81] x (=T'\ {0})).

In fact, we can easily construct a symbol rk(t, 7, &) for (t,7,€) € [0,8] x
R x (—T'\ {0}) satisfying (3.2). Note that r%(¢, 7, ¢) is uniquely determined

modulo 87" 7([0,6,] x (~=T'\ {0})). Put
PE(t,7,6) = p"(t,7,6) + g5 (t,7,€) + ay (8,7, &) + 15 (¢, 7, €)
for (t,7,€) € [0,8;] x R x (T U (=T))\ {0}). Then we have the following
LEmMA 3.1. We have
P(t,7,&) = PY(t,7,&)0---0 P"(t,T,§)
(mod 875 ([0, 61] x (T U (=T)) \ {0}))).

PROOF. Write

PH(t, 7€) ~ Zam& in S757([0,6,] x (TU(-T)) \ {0}))
(1<k<r),

where the PF(t, 7, ) are positively homogeneous of degree (m(k)—1) in (7, &).
We also write
PY(t,7,6) 0 P*(t,7,6) 0+ 0 PH(t,7,€) ~ > I} (t,7,€)
1=0

in ST ([0,61] x (TU(-D)\ {0}) (1 <k <7),

where the I"*" *(t,7,€) are positively homogeneous of degree (m(1) + - - -+
m(k) — ). For example, the Il1’2(t, 7,&) are given by

BAre = 3 OMEMETE) DIt 7).
h,M,V€Z+
h+p+v=Il
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Then it is easy to see that

1
IZLZ(t? T, é—) - Z (_1)m(1)+m(2)—lm(aﬁpj)(t’ =T, _§> (DfPB)(t, -, _é)
h,u,u€Z+ ’
h+p+v=Il

= (1O )
for (£,7,€) € [0,8,] x R x ((~T)\ {0}).

Moreover, we can prove by induction on k£ that

(33) Ill’m ’k(t7 T, é") — (_1)m(1)+~-~m(k)—ljll,~~~ ’k(t, _7, _f)
for 2 <k <rand (t,7,£) €0,6:] x R x ((T') \ {0}).

Since P(t,T,£) is a polynomial of (7,¢) and
P(t,7,6) = P'(t,7,€) 0 -+ 0 P'(t,7,€) € S5 " ([0,81] x (=T) \ {0})),

(3.3) proves the lemma. O

We write

bt 7.€) = (1. )7 + ()7 + 05(1,),

abt, — ak(4,6)/3.) = B(0. )7 + (2. + B4(4,),
if 1 <k <r and m(k) = 3. Then it is obvious that

bo(t,€) = b5 (¢, €)

i (2,€) = b5 (6,€) — Sak (1, (1.,

I5(0,€) = B5(0,€) + 5k, €)% (1.€) — a1, OBt ©)

LEMMA 3.2. Assume that 1 < k < r and m(k) = 3. Putting b(t,7,§) =
sub o(PF)(t,7 — a¥(t,€)/3,€) we have the following:
(1) There is Cy > 0 satisfying

34)  min{min [t~ s Db 0| < Cilalt, 7 65512
se
for (t,7,€) €[0,01] x R x (T n.S"™1)
if and only if there is Cy > 0 satisfying

(3.5) min{sggg) [t — sl L}b(t. (a5(t,€)/2)' 7, €)]
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< Coholt, (a5(t,€)/2)"?, & p9)'V2,
(36) mind min [t~ s|, 1}(2-0)(¢, (a5(1,€)/2)*,€)

< Cohu(t,0,& 92 (= V2Caa5(t,€)'?)
for (t,€) €[0,6,] x (T NS™1).

(ii) (3.4) is valid if and only if there is C3 > 0 satisfying

(3.7) mﬂgﬂﬁ—%ﬁWﬁ“@&@l
< Cyho(t, AR(2,€), & p")H2,
(3.8) mﬂgﬁﬁ—ﬂJW&M@Nﬁﬂfﬂ

< Csha(t,0,69%)7 (= V2Csa5(t,€)'?)
fOT (t7€> € [Oadl] X (fmsn—l)’

where
V@O_{4-U@@O<Q
(3.9) AR €) = VR (L, €) (a5(8,£)/3)>.
REMARK. Assume that m(k) = 3. Then we have
(3.10) holt, 7,6 9%) = ho(t, 7 — af(t,€)/3,& p")
= 37"+ ab(t,€)* — 6ras(t,©),
ha(t, 7,6 0%) = ha(t, 7 — af(t,€)/3,& %) = 37° + 2a5(t, €).

Hyperbolicity implies that

(3.11) (a5(t,€)/2)* < (a(t,€)/3)%,

and the discriminant D¥(¢,€) of pF(t,7,€) = 0 in 7 is given by
(3.12) DA (t,€) (= DM(t,€)) = 4a3(t,§)° — 27a5(,€)",

where D¥(t,€) denotes the discriminant of p*(¢,7,£) = 0 in 7.
PrROOF. Write

3

ﬁk(t,T, f) = H(T - 5\?(25,5)), i'e'a

=1
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M) = M€ +af(t,€)/3 (1<1<3)

Assume that (3.4) is valid. Then (3.5) is valid with Co > C1. Fix (¢,§) €
[0,61] x (T'N.S™1). We first consider the case where Aj(t, &) # A(t,£) for
1 <l < p<3. Then we can write

(3.13) bt 7,€) = Z [ (t,7,€),

where R R
bi(t,€) = b(t, N (1,€),€) /07 (1, AP (,€),6) (1 <1<3).

(3.4) gives
mln{sgug)| s, THb(t, &) < Cy

By (3.13) we have
d:b(t,7,&) = Zbl (t,€)(2T + NE(t,€)),
I=1

since S°° =1 u<t ¢) = 0. Therefore, we have

. . 5. 1/2
(314) min{ min ]t—s|,1}|ébb(t,r,§)|§01{6|T|+\/§<;)\f(t,§)2> }
= Co{6l7| + V6ag(t, €)'/},
since
3
(3.15) DN (t.€)? = 2a5(t.6).
=1

So (3.11) and (3.14) yield (3 6) with Cy > (2v/3 + v/6)Cy1. Next consider
the case where MF(t,€) # Mi(t,&) = Mi(t,€), for instance. Then we have
ho(t, N(t,€), & %) = 0 and, therefore, we can write

(3.16) b(t,7,€) = (1 = A (£, €))b(t,7,€),
where b(t, 7,£) is a linear expression of 7. (3.4) yields
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So we have

I;(ta T, 5) - Bl(ta §>(T - j‘lf<t’ 5)) + EQ(tv 5)(7— - j‘g(t’ 5))7
(3.18) min{ i It — s, 1}bi(t, 6)] < V20, (1=1,2),

where
bi(t, €) = (=1)'b(t, N, (£,€), )/ (Ni(t,€) = M(1,€)) (1=1,2).
Since
(319) 0-b(t,7,€) = ba(t,€)(7 — A§(£,€)) + (ba(t,§) + 2ba(t, €)) (T — M (£, ),
(3.11) and (3.15) — (3.19) give
min{ min [t = s|, LH(Ob)(1, (35(1,€)/2)'7, )|
< 4V201{(a5(8,)/3)" + 2a5(¢,€)'/?} < 12v2Ca5(1, €)',

which proves that (3.6) is valid. Finally consider the case where Me(t,€) =
A5(t,6) = A5(t, €) (= 0). Then we have a5(t,¢) = a5(t,¢) =0,

holt,7,&p") =374 and  hy(t,7,&9%) = 37%

Therefore, we can write

(3.20) b(t,7,€) = 7b(t, &),

where

(3.21) min{ min [t — s|, 1}|b(t, €)| < V/3C4.
sER(E)

This yields
min{ min |t — |, 1}(9,0)(t, (a5(6,€)/2)", )] = 0 < m(t, 0,65 (= 0).
Next we assume that (3.5) and (3.6) are valid. Write
b(t,7,€) = b(t, (a5/2)'*, &) + (9:0)(, (a5/2)'*, &) (r — (az/2)"*)
S @)(1,0,€)(r — (@52,
(3.22) ho(t, & 5") = 9((ay/3)* — (a5/2)"°) + 6(a5/2)**(7 — (a5/2)'"*)*
+3(° = (a5/2)7°)?,
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where af = aF(t,&) (1 =2,3). Since

(3.23) ha(t, (a5/2)"%, & p%) = 9((a2/3)* — (as/2)"?),
we have
(3.24) ho(t, (ak /2)Y3, &%) < ha(t, 7, & %).

Moreover, we have

(3.25) (1 — (a5/2)"/*)* < |7% — (a5/2)*°| + 2|(a5/2)"* (7 — (a5/2)"?)]
< ho(t, 7, & 95) 2 VB + 2ha(t, 7,6 97) 7 /N6 < 2ha(t, 7, & 9%)' 2,
(3.26) {(a5)"*(r — (a5/2)"/*)}* = halt, (a§/2)"%, & p¥) (7 — (a5/2)"/*)"
+{3(a5/2)**(r — (a5/2)'/*)*}?
< 5hy(t, Taféﬁk)Q-

We may assume that [(92b)(¢,0,&)| < Cy. Therefore, (3.4) is valid with
C > 6C5, which proves the assertion (i). (3.22) gives

hot, (a3/2)"%, & ") = 9{(a5/3)” — (a5/2)""}
= 9{(az/3)"* — (las]/2)"*H(as/3)"* + (las]/2)"*}
x {(a3/3) + (lagl /2)*°}.

So we have
(3.27) 9(as/3)**{(a5/3)"? = (las]/2)/*} < halt, (a5/2)"/°, & B").
On the other hand, we have

ha(t, AF(1,€), € ) = 12(ak/3) — 12(ak/3)"([a51/2)
= 12(ak/3)"/*{(a/3)1"* — (|a1/2)"*}
X {(a5/3) + (a5/3)1/2(|ak]/2)"7* + (1ab1/2)°}.

By (3.11) we have

(3.28)  12(a3/3)**{(a3/3)""* — (las|/2)'*}
< ha(t, A(t,€), &%) < 36(a3/3)**{(a3/3)" — (las/2)"/},

which, with (3.24) and (3.27), yields
(3.29) ha(t, (a5/2)"/3,&p") < holt, AF(t,€), &%) < 4ho(t, (ah/2)'2, & P").

95



Now we can prove the assertion (ii). Note that
atagpk(ta T, 6) = 2atalf(t7 5)7
O-b(t, 7€) = 20(t, )7 + bi (£,€) + 1005 (£, ).

So we have

(3.30) |(:-b)(t, A™(2,€),€) — (9:0)(t. (a5(t,€)/2)"%, €)|
= 2|bo(t, &)1{(a5(t.€)/3)'" — (la5(t. €)|/2)""*}
< 2|bo(t, €)|(a5(t,€)/3)""2

since [ AK(t,€) — (ah(t, £)/2)/%) = (a(t,€)/3)"2 — (ak(t,€)]/2)". This im-
plies that (3.6) is valid if and only if (3.8) is valid. We have also

(3.31)  |b(t, A™(¢,€),€) — b(t, (a5(¢,€)/2)"/,€)]
< {(as(t,€)/3)"% — (la5(t, )1/2)*}(9,b)(t, (@5(t,€)/2)*, €)|
+{(as(t,€)/3)"% = (la5(t, €)1 /2) Y| (92b) (2,0, )] /2.

It follows from (3.23) and (3.24) that
(3.32) 3(ay(t,€)/3)*{(a5(t,€)/3)"* — (las(¢,€)[/2)"°}
< ha(t, (a5(t,)/2)'°, &5")% < ha(t, At €). &9°)1,

since (a — §)Y/2 > a!/? — gY/2 if @ > B > 0. This, together with (3.6) and
(3.31), proves that (3.5) and (3.6) hold if and only if (3.7) and (3.8) hold.
]

LEMMA 3.3. Assume that 1 < k <r, and m(k) = 2. Then there is C; >0
satisfying

(3.33) min{slerg(ré) It — s|, 1}|sub o(P*)(¢t,7,€)| < Cih(t, 7, & p")/?
for (t,7,€) €[0,0;] x R x (T NS"1)
if and only if there is Cy > 0 satisfying
(3.34)  min{ min ¢ — s, 1}|sub o(Ph)(t, —ai(t,€)/2,6)|
< ol (t, —a(1,€)/2,6 )2 for (1,€) € [0,6,] x (TN S"7).
REMARK. Assume that m(k) = 2. Then we have

(3.35) hi(t,7,&p") = 2(7 + af(t,€)/2)* + 2a5(t, ).
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Proor. We have

sub o(P*)(t,7,€) = sub o(P")(t, —a¥(t,€)/2,€)
+ (0-sub o (P*))(t,0,6) (1 + a%(t,£)/2).

Therefore, this, together with (3.35), proves the lemma. ]
Define
(3.36) BE(t,€) = sub o (PF)(t, A(t, &) — ai(t,€)/3,€)

for 1 < k <r with m(k) = 3. We note that

dal(t,&) = 2a¥(t,£)9,af (t,€)/3 — D,a5(t, €),
(3.37) sub o(P*)(t,7 — a¥(t,£)/3,€)

= (7 — ak(1,)/3,6) + 0 (1, 6) - 7 — S0 €)

if 1 <k <rand m(k)=3.

LEMMA 3.4. Let k € N satisfy 1 < k <r and m(k) = 3. (i) Assume that
ak(t,&) £ 0 in (t,€). Then there is Cy > 0 satisfying

(3.38) min{ g;gg) |t = s|,1}|sub o (P*)(t, 7 — df(t,€)/3,€)]
< Cihy(t, 7, & 95)Y% for (t,7,6) € [0,01] x R x (TN S"Y)

if and only if there is Cy > 0 satisfying

(3.39) min{ min [t = s|, 13" (¢, )|a5(4,)
< Co(DM(t, €)ak(t,€))?,

< Coak(t, )Y for (t,€) € [0,0,] x (TN S™ ).
(ii) Assume that ak(t,€) = 0. Then (3.38) is valid if and only if
bi(t,€) +idhal(t,€) = B5(£.€) =0 for (1,€) €[0,8] x (TN S").

PROOF.  Assume that as(t,&) # 0 in (¢,£). By virtue of Lemma 3.2 it
is enough to prove that the conditions (3.7) and (3.8) are equivalent to the
conditions (3.39) and (3.40). Here we may modify the constants appropri-
ately. By (3.37) we see that (3.8) is valid if and only if (3.40) is valid. (3.11)
and (3.12) yield

(3.41) 108(a5/3)*{(a5/3) — (|a4]/2)*°} < D*(¢,€)
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= 108{(a5/3)* — (a5/2)*} = 108{(a5/3) — (|a5|/2)*}
x {(a5/3) + (a5/3)(las] /2)*° + (la5] /2)*°}
< 324(a5/3)*{(a5/3) — (|as]/2)*"},
where af = aF(t,€) (1 =2,3). This, together with (3.28), yields
(3.42) 3(a/3)ha(t, AM(t,€), & ) < D¥(t,€)
< 54<d§/3)h2(t7 Ak(ta f)a é;ﬁk)a
since
(a5/3)"*{(a5/3)"* — (la5]/2)""*} < (a5/3) — (la5]/2)*"
< 2(as5/3)"*{(a5/3)"* — (laz]/2)""*}.
Therefore, if (3.7) is valid, then (3.39) is valid with Cy = v/3Cs. Applying
the Weierstrass preparation theorem to a5(t,£), we can prove that (3.7) is

valid with C5 = 6C4 if (3.39) is valid, which proves the assertion (i). Next
assume that a(t,&) = 0 in (¢,€). Then, by (3.10) and (3.11) we have

a3(t,€) = DM(t,€) =0 and  ho(t, 7, &9") = 374,
which proves the assertion (ii). O
For (tg,z%) € (0,4;] x R™ and € > 0 we put
Q. (to, 2°) = {(t,z) e R x R"; tg —t > e|z — 2")°}.

LEMMA 3.5. Assume that the Cauchy problem (CP) is C*° well-posed and
has finite propagation property. Then there is g > 0 such that for (to,2°) €
[0,00) x R™ and p € Zy there are C > 0 and q € Z, satisfying

|Ulpey (t0,20) < ClPUlg 0., (10,20

for any u € C°(R"™) with u(t, z)|;<o0 = 0. Here |f|,x is defined by

[flox = sup  |D/Dyf(t ).

(t,x)EK, j+|al<p
Proor. We can choose gy > 0 so that
({(t2,2")} = To) N {t > 0} € 0, (tg,2°)

if (to,2°) € (0,01] x R", (t1,2') € Q.(to,2°) and ¢; > 0. Here Iy is a proper
convex closed cone in R™"! such that Ty C {t > 0} U{0} and Ty satisfies the
following;:

u(t,r) =0 in To(te, 2°) (= {(to,2")} — To)
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if (to,l’o) S [0,51} X Rn, u e Coo(Rn+1),
suppu C {t > 0} and P(t, Dy, D,)u(t,z) = 0 in Ty(tg, 2°).
Define
X ={f € C*(R"™); supp f C {t > 0}}.

X is a closed subspace of the Fréchet space C*°(R""!). The operator X >
f(t,z) — u(t,z) € X is a closed operator, where u(t,z) is a unique solution
in X satisfying Pu(t,z) = f(t,z). So Banach’s closed graph theorem proves
that for any compact subset K of [0,00) x R" and p € Z,, there are a
compact subset K’ of [0,00) x R", C, i > 0 and ¢ € Z, satisfying

(343) |u|p7K S Cp,K|PU|q7K’ for u e X.

It follows from [2] that for any u € X and (tg,2°) € [0,6;] x R™ there are
f € X and " > 0 such that f = Pu in Q. (t;.2°) and

(3.44) [flomnss < C'|Pulg.0z4 10,00

( see, also, [6]). By the assumptions there is v € X satisfying Pv = f. Then
finite propagation property implies that v(t, z) = u(t, z) in Qg (t, 2°). (3.43)
with K = Q,(to,2°) N {t > 0} and (3.44) yield

|Ulp, ey (t0.20) = [Vlp.0y (t0,20) < Cp il flg i < Cp | flgman

< C/Cp7K|Pu|p,QEO(to,a:0)v

which proves the lemma. Il

3.2. The triple characteristic factors

We factorized p(t, 7€) as (2.3):

7(4)
p(t, 7€) = [[P*(t. 7€) for (t,7,6) €[0,6] x R x (T; NS,

k=1

where 1 < j < Ny. In this subsection we omit the subscript j and the
superscript j, and “j” of r(j) and m(j, k), in the same manner as in §3.1.
Fix ky € N so that 1 < ky < 7 and m(ky) = 3. We also define D*(¢,&) (
0<1<3)by

3
PP = ] (reaieo)
=1

1<k<i<3
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Dy (1,€) =1,
where 115(t, &) = (A (£,€) — \°(t, €))% Then we have

DEe(t,€) = D*(t,€) = 4alo (¢, €)* — 27a% (1, €)2,
DI (t,€) = 9a°(t, €)?,
D°(t, &) = 6a5°(t,€).

By the factorization theorem we can write

Y
Y

(345) P(t, T, 6) :Pl <t7 T, 5) ©---0 Pko_l(ta T, 5) © Pko-‘rl(t’ T, g)o
*+ 0 Pr(ta T, 5) © Pk()(tu T, 5) + R(t7T7 5)7

where R(t,7,€) € STy "°([0,61] x (T'\ {0})). We note that the P*(¢,,¢&)
are different from the P?*(t,7,€) in (2.4) with e = 0 if kg # r, and that
whether (2.18) and (2.19) are satisfied or not does not depend on the order
of the product in (2.4) ( see Lemma 2.5 and its remark). We may assume
that P*(t,7,&) are defined for (t,7,&) € [0,01] X R X (Tu(=DI))\{0}) as
stated in §3.1. For (t,7,&) € [0,01] x R x ((=T) \ {0}) we define R(t, 7, &) by

R(t,7,&) = P(t,7,&) — PX(t,7,6) 0 --- 0 PP7Y(t, 1,€)
o Pk°+1(t,7', o0 P'(t,1,§)0 Pko(t, 7,§)

( see Lemma 3.1). Now fix kg, and write Pk (¢, 7,€), p*(t,T,€), Dfo(t,ﬁ),
©as P(t77—7 §)7 p(t77—7 £>a Dl(taf)7 T i.@.,

p(tv T, 5) = 7—3 + a1<t’ 5)7-2 + a2<t7 5)7- + a3(t7 g)a

ﬁ(t, T, 5) = p(ta T = al(t7£)/37£) = 7-3 o d2<t7§)7— + d3<t7£)7

P(tv T, 6) = p(ta T, g) + QO(ta T, 5) + Ch(ta T, 5) + T(t, T, 5)
until Lemma 3.10, where ¢(t,7,&) € Si’{l([O,él] x (T'\ {0})) is positively
homogeneous of degree (2 —1) in (7,¢) for || > 1 (1 =0,1) and r(¢,7,&) €
Sto2(10,61) x (T'\ {0})). Let ty € [0,6,/2], & € I'NS"~! and 6 > 0, and

let T'(0),Z(0) € C*°((0,65]) NC([0,600)) (1 <1< n) bereal-valued functions
satisfying the following:

(i) T(0) = 0 and Z(0) = £°, where Z(0) = (Z,(0), -+ ,Z,(6)).
(iii) =(0) € 8" for 0 € [0,6y] and the =;(6) are real analytic in [0, 6p).
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(iv) T'(0) can be expanded into a convergent Puiseux series of 6 € [0, 6.
We say that T'(6) and Z(0) satisfy the condition (7', Z) if the above conditions

(i) — (iv) are satisfied.
(I) The case where D3(t,=(0)) # 0 in (¢,0).
Applying the Weierstrass preparation theorem, we can write

Ds(to 4+ t,2(0))as(to +t, 2(0)) = i dy(t)6"

I=lp

no

= 0"d(t,0) [ [(t — t:(0)), d(t.0) #0

i=1
for (¢,0) € [—dp, o] X [0, 6], where 0 < 6 < 01 — to, di,(t) # 0 and ¢;(0) =
ti(0;to,=Z). The t;(0) can be expanded into a convergent Puiseux series of
in [0, 6y], with a modification of , if necessary. Put
(0);p) = {to +1:(0); 1 <i <mo},
(0);p) = {(to + Ret;(6))+; 1 <i <mnp}.

[1]

Ro(
Rol

[1]

Then we have
Ro(2(0)) D Ro(E(0);p) (0 € (0,60)),
(3.46) min |to+7(0) —s| < min  |to+T(0) — s|
SER0(E(9)) s€R0(2(0);p)
< i to+T1T(0) — 0 € (0,6y]).
< [to+T(0) —s| (0 € (0,60])
(3.41) implies that Ds(t,&) = 0 if Ds(t, &)as(t, &) = 0.
(0)) £ 0 in (¢,0).

(IT) The case where D3(t,Z(0)) = 0 and a»(t,

[ ||

Similarly, we can write
no
ao(to +1,2(0)) = 6°d(t,0) [ [(t — :(6)), d(t,6) #0

1=1

fOI‘ (t,H) € [_50750] X [0700]7

where t;(0) = t;(6; t9, =) is expanded into a convergent Puiseux series of 6 in
[0, 6y], with modifications of 6y and dy if necessary. Since Dy(t, &) = 9as(t, €)?,

we have also
Ro(Z(0)) D {(to + Ret;(0))4; 1 <i < no} (=Ro(2(0):p)) (0 € (0,00)).

Putting Ro(Z(0); p) = {to + t:(0); 1 <1i < ng}, we have (3.46).
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(IIT) The case where ay(t,Z(0)) = 0 in (¢,0).
By (3.11) we have p(t, 7,Z(0)) = 73 and put

Ro(Z(0);:p) = Ro(E(0);p) = B (C Ro(E(0))),

no = 0 and [y = 0.
Now we define

(= A(toafo ,Z2)) ={O0rdgjo az(to + 7(0),=(0))}/2,
fio (= fio(to, &%, T,2)) = {Ordgyo Ds(to + T'(0),2(0))}/2 — i,
( pa (to, £, T =)
Ordgo{ GRH(lm ) to +T(0) — sla(to +T(0),=2(0))},
pi (= pa(to, &%, T, 2))
= Ordygo{ GRIOI(HD lto + T(0) — s|B(to +T(0),Z(0))},
ps (= ps(to, &, T, 2))

O d9¢ {SGRH(HD |t0 + T( ) — S|261(t0 + T(@), E(Q))},

i (= 5(75075’07 T,2)) = Ordgw{ II(llI(le) lto +T(0) — s|}.

>
|||

where

alt,&) = by(t, €) + idaq (¢, ),
e1(t, &) = sub® o(P)(t, —ay(t,€)/3,€)

and [(t,&) is defined by (3.36) with k = kg, and 1 = jig = fio — 1t = 0o and
d = 0 in the case (III). Here for f € C([0,6y]) Ordgy f(0) = v ( € R) means
that there is ¢ € C\ {0} satisfying f(6) = ¢0”(1 + o(1)) as 0 | 0. We write
Ordgo f(0) = oo if f() = O(0") as 6 | 0 for any N € Z,. Note that

(3.47)  (9rsub o(P))(t, A(t,§) — a1(t,§)/3,€) = 2bo(t,§)A(L, €) + a(t, §).
It follows from (3.41) and (3.42) that
flo = 241,
fio = Ordgo ha(to + T(0), A(to + T(0),Z(0)), Z(0); p) /2.
ProposITION 3.6. If
(3.48) min{p, ps} < fior  pa < flo,

then “the Cauchy problem (CP) is not C* well-posed” or “(CP) does not
have finite propagation property.”
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REMARK. When one replaces Ro(Z(6); p) by Ro(2(8);p) in the definitions
of pup ( k=1,2,3) and §, one can show that the proposition is valid, using
(3.46). It follows from (2.5) and (2.26) that whether (3.48) holds or not
does not depend on the order of the product in (2.4), although the py, are
defined under the factorization (3.45). Indeed, if 1 < k < r, m(k) = 3
and a(t, 7, €) is a polynomial of 7 satisfying a(t, 7, &) = O(hy,_1(t, 7, £)Y?) for
(t,7,€) € [0,61] x I x (T N S""1), then there are b,(t,&) (1 < pu < 3) and
C > 0 such that

a(t77—7 5) - b,u'(t7§>pﬁ(t7 T? §)7

S 1M

bu(t.E) <C (1<pu<3).

So we have

3
0-a(t,7,8)| < CY_10:p5(t, 7, O] < C'ha(t, 7, & pF)2.

p=1

COROLLARY 3.7. Assume that the the Cauchy problem (CP) is C* well-
posed and has finite propagation property. Let (ty,£°) € [0,6,/2] x (TNS™1).
Then we have

ﬂO(t07£07T7 E) S N’Q(tOJgO?Ta E)a
ﬂ(t07£0>T7 E) < Mk<t0a507T> E’) ( k= 173)

if T(0) and Z(0) satisfy the condition (T, Z).

REMARK. The corollary does not depend on the order of the product in
(2.4).

In the rest of this subsection we shall prove Proposition 3.6, and give
several lemmas. Assume that (3.48) is satisfied. Then we have § < oo since
pr >0 (k=1,2) and puz > 26. Moreover, we have jig > 0 and Ds(ty, &%) = 0.
There is ¢y > 0 such that

min  |to + T(0) — s| > o0 for 6 € [0, 6,).
Lanin o T(0) = 5] 2 6o 0,6,

In the case (III) we may take co = 1 and ny = 0. For v € R we put
(3.49) T,(0) = T(6) + v6°.
In the cases (I) and (II) we have

da(to + Tu(6),2(9)) = 0%4(d(v) + o(1)) s 610,
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where d(v) # 0 is a polynomial of v with real coefficients. It is easy to see
that

d(v) >0 forwve [—00/2 00/2]
&2(t0+T(0) 1/2 0“ \/ —|—0

unlformly inwve [—00/2, 00/2] as 6 ] 0.

Write
alty + Ty(0),Z(0)) = 077°(dy(v) +o(1)) as 6] 0
if a(t,=(0)) £ 0 in (¢,0),
Blto + T,(0),2(0)) = 0™ °(da(v) + 0(1)) as 610
if 8(t,=(0)) £ 01in (t,0),
é1(to + T,(0),2(0)) = 07 (d3(v) + (1)) as 10
if ¢1(¢,2(0)) 0 in (¢, 0),

where fi, € Q and the di(v) (# 0) are polynomials of v. Here, for instance,
we put fig = oo if 5(t,Z(0)) =0 in (¢,6). We note that i, <y (1 <1<3).
It is easy to see that

{Ordging(to‘i‘T( ) E( ))}/2— :/AL(] for v € [—60/2,00/2]
in the case (I). We also write

ag(to + T,,(0), 2(0)) = 0" (da(v) +0(1)) as 6 {0
if as(t,=(0)) Z 0 in (¢,0),
where dy(v) (# 0) is a polynomial of v with real coefficients. Therefore, there

are vy € (co/4, co/2) and sq > 0 such that Iy = [vg — sg, vo + So] C [co/4, co/2]
and

for v € Iy. In particular, we have

v(to +T:,(0),2(0)) =

1 ifdy(v) >0oras(t,=(0)) =0in (¢,6),
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for v € Iy, where

1 ifaste) >0,
V(66 = {—1 if ds(t,€) < 0.

We replace T'(0) by T,,(0). Then we can assume that Iy = [—sg, So], tu = fu
(1 <1 <3)and min{uy,us} < o or puy < fio. Let k and &’ be positive
rational constants satisfying ’x < 1. Moreover, we assume that ¢’ € (0, 1)
and 1 — d'k < dr/2 ( see (3.61) below). We make an asymptotic change of
variables:

(350)  t=tsip) =t +T(p") +p"s, z=aly;p)=p"""y.
Put
(3.51) Py(s,0,m) = P(t(s;p), p™o, p' " "n).

Let K be a compact neighborhood of (#p,0) in R x R", and put

V= {(Say7p71) € [_50750] X R" x (07p61]7 |y| S 1}7

where py > 0. We choose py so that

(3.52) {(t(s;p), (Y p)); s € [=s0,50] and [y| <1}
c{(t,z) € K; t €[0,6]} for p > po.

LEMMA 3.8. Letp € C*(R), and let q(s, o) be a polynomial of o of degree
3. Then we have

g, 7 D.) (e us)
= [o(s. p"(0u(5) + 0)) — 50 (s 9" (Ou0(s) + 0¥ (s)
— 095,/ 0(5) + )P (5 o p,u(s)

for u(s) € C*(R), where ¢ (s,0) = 0%q(s,0). Here a(s,0)|o—p, = a(s, D)
for a symbol a(s, o).

PRrROOF. If q(s,0) = o, 02 or ¢°, then the lemma can be easily proved.
This proves the lemma. ]

Let ¢ = £1, and let 1 and 7y be positive constants. Put
[

(3.53) @(sip) =Y p 0i(s;p),

k=0
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+ 07y E(pr),
(3.54) E(s,y;p,e,v0, ) = explic®(s,y; p) +ip”™p(s; p)];

where o1 (s;p) € C([=s0,50]) for p > po, wr(s;p) satisty [0hpr(s; p)| < C
for I € Z, and (s,p7') € [~s0,50] X (0,p5'], I = 0 or 1, and A(t,€) (=
Ako(t,€)) is defined by (3.9) with k = ky. By Lemma 3.8 we have

P(s, Dg; p, E)u(s)
= E(Sa Y5 P, &, Vo, @)71Pp(57 DSa Dy)(E(Sa Y5 P, €, Vo, QO)U(S))
= E(s,0;p,,10,) " P(t(s; p), p"* Ds, epZ(p~ ")) (E(s,0; p, e, 10, 0)u(s))
= [P(t(s; ), epA(s; p) + p" s + p*F 0, ep=(p "))
i ~ v K — —K
= 5 PO(t(s:p),epA+ p" " 0sp + 0, 6pE(p7))
x " (ep! O A + p02)
— " (ep' " RA+ pP D20 o=p,uls),

where

A= A(s; p) = A(t(s; ), E(p™)) — aa(t(s;0), Z(p7")) /3
and ¢ = @(s; p).
LEMMA 3.9. Let pp € Z, and let a(s,8) € C([—so, so] % [0,6y]) satisfy
a(s,0) = 0(60") wuniformly in s € [—so, so]) as 6 ] 0.
Namely, there is C' > 0 such that
107 a(s,0)] < C if (s,0) € [—s0,50] x (0,60
Then, for anyl € Z.
dla(s,0) = O(0") uniformly in s € [—s, so] as 0 ] 0.
REMARK. For instance, for as(t,£) there is L € N such that
a(s, 0) = a(t(s; 07/%),Z(0%)) € C([—s0, 50] x [0,65'"]).
Then, we can apply the lemma to a(s, ), and for any | € Z, we have

OLas(t(s;p),Z(p™™)) = O(p™™) uniformly in s € [—sg, s0] as p — 0.
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Proor. By assumption we have
(Oha)(5,0)=0 ins(0<I<p—1).

Then Taylor’s formula yields

dla(s,0) =

(p—1)! /0 (1 —7)=1(8,05a)(s, 70) dr.

This proves the lemma.

Recall that

pt,7,8) =p(t, 7 —ay(t,€)/3,€) = 7° — ay(t, &)1 + as(t, €),
Pt,7,8) =pt,7,.&) + qt,7,8) + a(t, 7.8 +r(t,7,8),
Qo(t, T — a1 (t,€)/3,6) = bo(t,E)7% + by (t, €)1 + ba(t, ),
aft,§) = Bl(taf) + i0pay (¢, ).

A straightforward calculation yields

P(s, Dy; p, E)u(s)
= [e0p(t(s, p), A(s; p), Z(p™)) + 3ep" 2 A(s, p) (0" Dsp + 0)?
+ p (070050 + 0) + pPqo(t(s, p), Als: p), Z(p 7))
+ep "V (t(s, p), Als: p), Z(p7)) (0" 0sp + 0)
+ 0P bo(t(s, ), E(p™)) (0" 0sp + 0)°
+€pql( (s,p), A(s; p), Z(p™"))
+ ™ (t(s, p), Als: p), E(p™")) (0" 0sp + )
50 0P (1(5,0).0. 20 ) (000 + 0)?
+1(t(s3 p), epA(s; p) + p"" 0050 + p™ 0, 2p=(p7))
— {3eipA(s; p) + 3ip™ (0" Dsp + 0) + ibo(t(s, p), Z(p™"))

i DR .
+ 507 (153 0),0,2pE(p™")) + 57 (t(s:.0). 0,292 (0™"))}
x (ep"10,A(s; p) + p* 002 )
— (ep" P2 A(s; p) + p 003 0) g p,uls)
— [p355+3z/0 (8590)3
+ p*{qo(t(s; ), A(s; p), Z(p™")) — 3ip™ A(s; p)O, A(s: p) }
+ 36p1+26n+2V0A(S; p)(asgD)Q
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+ep" P Lby (4(s; ), Z(p7)) + p™Dsan (t(s; p), E(p7))}
x (Osp + p " D)
+ep{ai(t(s; p), A(s; p), E(p~)) + " Fas (t(s: p), E(p ")) /3
+ip™bo(t(s; p), E(p~")Dsan (t(55 ), E(p ™)) /3}
—2ep°(A(s; p)° — as(t(s; p), E(p™)) /2)
+ pP B3 590)2D — 3i(Duip) (020)

+p U (s,p7 1 050,020, 0%, Dy, €)

+p "o (t(s;0), E(p7%)) (Osp)? + =" Ha(s, p71 s, Dy )}

+ept 6 A(L(s; p), E(p7")) (9s0) Ds

— 3iA(t(s:p), Z(p™)) (05 )

— 310, A(t(s;p), Z(p™"))(Dsp) + p~ " l3(s, p7 " Dy)

+2p7 " A(t(s: ), E(p~)bo(t(s: p), E(p7F))

x (Os + p~ " Ds)}Hu(s),

— [POREI(9,0)% 4 pErer IR pn =R g (4 (g0
+ 3ep! PHRTAEEEO (R At (s; p), Z(p7))) ()
- ept PRI (o (1(s; ), E(p ")) (D + pT D)
et THIERR (IR0, (155 p), E(p "))

— 2ep? TR (pPRORTER (A(t (55 p), E(p )P — as(t(s; ), E(p77))/2))
+ pP B {3 ssO)QDs — 3i(0sp)
+p l(s, p” 8Sg0,82g0,83g0, Dy, e
+p 7 Hy(s, p71 Osp, D)}
+ep PRI 6 (0P r A(t(s; p), E(p7))) (Ds) Dy

= 3i(p" A(t(s5 ), Z(p™)))(02p)

= 3i(p" 0 A(t(s3 ), Z(p™")))(Ossp) + p (s, p~ "5 D)

+ 207 (P A(t(s;0), Z(p™)))bo(t(s;0), Z(p™")) (Dsp + p~ D) Yus),
where 14(s,0; X1, Xo, X3, X4, X5) is a polynomial of {X}i1<x<s with coeffi-
cients in C*([—s¢, s0] x [0,1]), degy, l1 = 2, degy, 1 =1 ( k = 2,3,5) and
degy, i = 3, l2(s,0; X1, Xy) is a polynomial of X; and X, with coefficients
in C%([~s0,50] x [0,1]), degx, lo = 2 (k = 1,2), and I3(s,0; D) is a dif-
ferential operator of order 2 with coefficients in C*°([—so, so] % [0, 1]), and
l5(s,0; D) = 0 if i = co. Here we have used the facts that

BA(t,€)* = as(t,€),
B() = ao(t(s: p), AC) = ai(-) /3,Z(p™")) +ip" A()Dsau ()

¥
~— §/
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— 50" duial’)
= qo(t(5;p), A(") — ar()/3,2(p™)) = 3ip™ A()0u(A(") — ar(-)/3),
bi() +ip™0sa1(-) = (),
a1 (t(s: ), —ar()/3,Z(p ™)) + p?"02a1(-) /3 + ip™bo()Dsar (-) /3 = &1 (-),
a(t(s:p), A(), E(p™))
= qi(t(s; p), —ar()/3,Z(p™)) + ¢ ((s1 p). —a1 (-) /3, 2(p™")) A()
+ 550, 0.2 ) ACY,

r(t(s; ), epA(-),ep=(p~")) = O(1),
rW(t(s; p), epA(-), ep2(p~")) = O(p~Y),
r@(t(s; p),0,epZ(p7F)) = O(p~2)

uniformly in s € [—sg, So] as p — oo,
where (-) = (t(s;p),Z(p~")). We note that

A(t,€)° — ag(t,€)/2 = w(t, ){(ax(t, £)/3)** — |as(t, )| /2},
Ds(t,&) = 108{(a2(t, ) /3)* — |as(t, ©)| /2H{ (a2(t, £) /3)* + |as(t, €)| /2},
Dy(t,€) < 216|A(t, €)® — as(t, €)/2|(a2(t, €)/3)** < 2D5(t,€).

This implies that there is C' > 0 satisfying
pPOTIRAt (s 0), E(p77)) = as(t(s3p), Z(p77)) /2] £ C

for (s, p™1) € [~s0, 50] x (0, py']. We shall prove Proposition 3.6 by dividing
into four cases:
Case A is the case where

min{ g, pust > pe/2 and  ps < 2.
Case B is the case where
min{puy, pust > 4 and 20 < ps < flo.
Case C is the case where
< s, 2p1 < e and  py < fi.
Case D is the case where
ps < pa,  2u3 < pp and  pz < fi.
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Let us first consider Case A. We choose
vo = (2 — piok — 20K)/3, k= (8 + po/2 + 3pa/2) 7",
where g = min{f — po/2,2/3}. Then we have

30Kk +3vg =2 — sk + 0k, 1 — 0k = (o + 3ua)k/2,

vo = sk (>0), 1y <2/3,

30k 4+ 3vo — (1 + 20k — ik + 2v0) = 10/2 + (B — p12/2 — pa)k 2> 19/2,
30k 4+ 3vy — (1 + 20Kk — puk +1vp) = 19/2 + (111 — pe/2)k > 152,
30k + 3vg — (1 + 20k — pusk) = 3u9/2 + (us — p2/2)k > 314/2,
30k + vy — (3 — 2fuk + fiK)

= 3v0/2 4 2(fio — 20)k + 3(f — p2/2 — pa)k = 3vo/2.

So we choose € =1, [ = 1 and o = 14/2 in (3.53) and (3.54). We note that

A(t(s1p),Z(p77)) = A(t(s:p), E(p7))* = as(t(s30),Z(p™"))/2 =0

and 3 — 2fipk + fik = —oo when i = co. Define pg(s;p) € C([—s0, So| X
[P0, 00)) by

B35)  alsio) = [ (o B0 ) ) P du
Note that

P B(t(sip), E(p7")) = da(s) +o(1) as p— oo,

where dy(s) # 0 for s € [—sg, s¢]. Here we have chozen a branch of (—pt2r—0%
x B(t(u; p), Z(p~*)))"* so that its imaginary part is negative. Then there is
d > 0 such that

Im po(s; p) > d|s| for s € [—s0,0) and p > po,

with a modification of py if necessary. Since

(Ospo(s; p) + p 20501 (53 p))?
= (0sp0)® + 3p™"2(D500)* (Dsp1) + 3p ™ (Dstp0) (Osipr)? + p~ /2 (Dy01)?,

Jsp1(8; p) is chosen so as to satisfy
3(0p0)” (Dstpr) + Bp~ TH2/2710 (R A(L(53 p), E(p ")) (Dssp0)
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+ p~ TR (R (i(s; p), 2(p7))) (Dutpo) = 0.
Noting ds0(s; p) = (—da(s))/3 + O(1) as p — oo, we define
er(sip) = = [l E L A ), Z( )
+ p U (R o (1 (u; p), E(p 7))/ (3(Dspo) (us )] du.

Putting

(356)  ulsip )~y pw(sip )
=0

(3.57) u_1(s;p07 ) =0, wu(0;p ) =1, up(0;p ) =0(k>1),
we obtain the following transport equations for u(s; p™'):
(3.58)  {(3(Dsp(s5p))? + Gp~ /2~ (P A(t(55 p), Z(p ")) (Dstp)

+ p BT R2E (g (1(s; p), 2(p7"))) Dy
+3(0sp1 (s )2 Dso(s: ) + p~* (D501
+6p7" (" A(L(s; p), E(p7")) (Bsip0) (Dsipr)
4307 (R At ). Z(07) (O
+ p U R (o (t(s; ), Z(p ")) (Dsipr)
 p B TR (T2 (15 p) 2(p 7))
— 9 v0/2=20=20)n—30

X (PRI (A(t(s; 0), E(p))° — as(t(s; p), Z(p ")) /2))
— 3i(Ds)(920) + p~ by (s p), Z(

— i (P At (51 p). Z(p™))) (024)
— 3ip P (P O, A(t (s p
270 2 (i A (s
X uk(S' p )
+ {li(s,p™ "5 050, 020, Bl¢p, Dy, 1)
+ prooK= YUs(s, p~ 1 050, D) —i—p*”O/Q*”llg(s,p*l,Ds)

+ 2p7 RO (PR At (3 p), E(p7))bo (s ), E(p 7)) D}
Xuk,1<8;p71):0 (k:071727'“)7

where 11 = (ft — p12/2 — pa)k. We can determine {ug(s;p™")}p—012,.., in-
ductively, so as to satisfy (3.57) and (3.58). It is easy to see that there are
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Cir >0 (I,k € Z,) satisfying
|Dlug(s;p7 )| < Crp for Ik € Zy, s € [—50, 80] and p € [py, 00).

Let ¢(s) € C§°(R) satisfy

o) = {1 if |s] < s0/2,

0 if |s| > so,

and put

N
(3.59) (s,y;07" Zp our(s; 7 )o(s)E (s, y; pr €, v, )
=0
(NeZy).
Then we have

(3.60) (p%DS)l(pl_é%Dy)aPp(& Dy, Dy)on (s, y; p_la 1)
( O<p365+2y0—1/0(N+1)+l+|a|)

unniformly in @EO,p(O, 0) N{|s| < so/2} as p — oo,

=100 -
unniformly in Q. ,(0,0) N {se/2 < |s] < s} as p = o
(M eN),
where
(3.61) Qeyp(0,0) = {(s,y) € Ry s < —gop” 2720y |2}

Here we have taken ¢ = 1 in Case A. Next cosider Case B. Note that i < co
and o < 0o. We choose

~ A

vy = (1= 0k + ik — pak) /2, K= (0 — ju+ i) "
Then we have

2 — pok + 0k = 14 20Kk — ik + 219, 1 — 0Kk = (fig — 1)K,

= (o — 1) /2 (> 0),
1+ 26k — fik + 2vy — (30K + 3vy) = vy + (2 — 200)K > 1,
1420k — ik + 29 — (1 4+ 20Kk — ik + o) = vy + (1 — 1)k > vy,
1+ 20k — ik 4+ 2v9 — (1 — pgk + 20K) = 2vp + (s — 1)k > 21y,
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1420k — ik + 219 — (3 — 2fuk + 1K) = 21y.

Therefore, we choose [=0in (3.53) and ¢ = +£1 so that the imaginary part
of a branch of (—¢j3(s; p)/3)'/? is negative, where

B(sip) = (P A(t(s;p), ("))~ (0" B(t(s; p). E(p~")).

We define (s; p) € C([~so, 0] x [po, 50)) by

90(8;/)):/ (—eB(u; p)/3)"? du.
0
Here we have

B(s; p) = (d(s)/3)"?dy(s) + o(1) as p — oo,
d(s) >0 and ds(s) #0 for s € [—sq, So,

Im(—ef(s;p)/3)"/? <0 for s € [—s0, s0).-

Writing u(s; p~!) as (3.56), we obtain the following transport equations for
u(s; pt):
(3.62)  {62(p""A())(Dssp) Dy + p~ 127205 (D)
+ep TR (o () (Dyp) — Bei(pMA()) (D2¢)
— 3ei(p" 0, A()) (Dsp) + 26p™ " (P A())bo () (Dssp) Yur (53 p71)
+ {epT T (PR () Dy 4 epT KT (prer T (1))
— 2e(pHO I (A() — (1) /2))
+3p~ 22 ((940)? Dy — i(950) (D30) + " bo () (Dsip)?
+ 07 (s,p7"3 Osp, 020, 00, D )
+p7 " (s, p71 0sp, D))
+2ep™ " (P A()bo () Ds +ela(s, p~1 Dy) yur—a (s:p™t) = 0
(k=0,1,2,---),

where (-) = (t(s; p), Z(p™")). Similarly, we can determine {ux(s; p™") }br—o1.2...
so as to satisfy (3.57) and (3.62). We define vy (s,y;p ',e) (N € Zy) by
(3.59). Then we have (3.60), replacing 1 by ¢ on the left-hand side and
O(pPrt2vo—ro(NF)+Haly by O p2—Hertor—no(N+2)++lal) o the right-hand side.
Let us consider Case C. Note that p; < oo and min{us — pq, 1} > 0. We
choose

vo= (1 =0k —1Kk)/2, &= (04 +ps)" ",
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where
ps = min{ps — 241, o — pr, 1} k.
Then we have

30k + 3vg = 14+ 20k — uk + vy, 1 — 0Kk = 1k + sk,
=1 =0k —mrK)/2=psk/2(>0), 1 <1/2

30k + 3vg — (2+ 0k — oK) = vy + (2 — 2p1 — ps)K > 1y,

30k + 3y — (1 + 20k — ik + 219) = Vo + (L — 1 — ps)K > Vo,

30k + 3vg — (1 + 20Kk — p3k) = vo + (13 — p1)k > 1o,

30k + 3y — (3 — 2fipk + fik) = v + 2(f10 — 21)k + 3(ft — 1 — ps)k > 31p.

We note that
B(t(s;p),Z(p™™)) =0 in s for p > py when uy = oco.

So we choose [ = 0 in (3.53) and e = +1 so that the imaginary part of a
branch of (—ep™* % a(t(s; p),Z(p~")))"/? is negative. We define ¢(s;p) €
C*([=s0, s0] X [po,00)) by

B el = [ (e Taltluip) 2o du

Writing u(s; p~1) as (3.56), we obtain the following transport equations for
u(s; p~t):
(3.64) {200 D, + p s aning.)
+ 35,0—(ﬂ—u1—u5)f€(pﬂHA(,))(aSSO)Q + Ep—(ua—m)'i(puw—?tsﬁél(_))
= 3i(050)(DF0) + p~*"bo () (D) Yun (55 p7 ")
+ {_25p7u073(ﬂ7u1fus)nﬂ(ﬂr?ﬂ)n(pZﬂonfﬂn(A( ) _ &3( )/2))
+ 14 (s, p Y050, 020,030, Dy, €) + p° =" Uy (s, p~t: D50, D)
ep TN G AC) (00)Ds = B AC) 02
= 3i(p" 0, A())(Dsp) + p~"ls(s, p~"; Ds)
+2p7 (P A())bo(-) (Ostp + p~ D))}
Xup_1(s;p7)=0 (k=0,1,2,---),

where (-) = (t(s; p),Z(p™")). Similarly, we can determine {ux(s; p™") }bro.1.2,..
so as to satisfy (3.57) and (3.64). We define vy (s,y;p ',e) (N € Zy) by
(3.59). Then we have (3.60) with an obvious modification. Let us finally
consider Case D. Note that u3 < oo. We choose

= (1= 0k — pi30) /3, K =8+ s+ ps) ",
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where
pe = min{pa/2 — piz, 3(4 — p3) /4, 3(1 — p13) /2, 1}

Then we have

30Kk + 3y = 1+ 20Kk — usk,

1 — 0k = (s + pe)k = psk + 3y,

vo = pek/3(>0), 19 <1/3,

30Kk + 3vy — (2 — ok + 0K) = 3y + 2(u2/2 — s — pe)k > 31y,
30k + 3y — (1 + 20k — ik + 219) = vo + (ft — 3 — ek > Vo,

30k + 3vg — (1 + 20k — ik +vo) = vo + (i1 — pis — 246/3)k > o,
30Kk + 3vy — (3 + fik — 2f10Kk) = 6o + (2(f10 — 2/1) + 3(ft — p3) — due)K
> 61.

We choose ¢ = 1 and [ = 0in (3.53) and (3.54). Define ¢(s; p) € C*(|—s0, 50
X [IOU’OO)) by

B9 elsin) = [ [ ) S )]

Here we have chosen a branch of [—(ps"~ 25”“1(t(u p), Z(p™)))]*? so that
its imaginary part is negative. Writing u(s; p~') as (3.56), we obtain the
following transport equations for u(s; p=):

{3(050)° Dy — 3i(D50) (02¢p) + 3p~Pra=ho)s (p™ A(-)) (Dsp)?
 p o3 =0k o () (Dgp) + p o () (Dstp) Yur(s: p7 )
+ {p T (6( o A(-) (Dsp) Dy — Bi(p A(-) (02 )—32(/)““8314(-))(85@
+ 27 (P A()bo(-) (D5 + p~"° Dy) + p~ls(s, p~'; Dy))
+ p—uo—(,uz—2u3—2u6)n(p,ugn—&%ﬁ(.))
_ 2p*4l’0*(2(/10*217«)4“3(/1*#3)*4#6)“(pQﬂON*ﬂN<A(_)3 _ &3(,)/2))
+ (s, p” 85%82 ,0%0, Dy, 1)
+puo o= 1l (S p asgp? S)}uk—l(s;p_l) =0 ( k:()71727)
Here I3(s;0,Ds) = 0 if o1 = a(t(s;p),Z(p™)) = 0 in s for p > pg if
w1 = oo, and S(t(s; p), Z(p~ )) = 0 in s for p > pg if gy = co. Similarly, we
can construct {UN(S y; p 1, 1)} ez, satisfying (3.59) with e = 1 and (3.60).
The condition (3.48) in Proposition 3.6 is satisfied if and only if at least

one of Case A to Case D occur. Indeed, first assume that min{puy, pus} < fi.
If py < ps and 2uy < po, then py < 1 and Case C occurs. If py < pz and
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po < 2uq, then py < i and Case A occurs. If puz < py and 2u3 < ps, then
us < ji and Case D occurs. If u3 < py and ps < 2us, then pg < i and Case A
occurs. Next assume that min{u, ps} > i and po < fig. If po < 20 ( < fig),
then Case A occurs. If 21 < o (< fig), then Case B occurs. This proves the
“only if” part. The converse is obvious.

Now we won't omit “ky”, i.e., P(t, Dy, D,) denotes the differential oper-
ator in §1.

LEMMA 3.10. Assume that the Cauchy problem (CP) is C°° well-posed
and has finite propagation property. Let K be a compact neighborhood of
(to,0) in R x R™, and let py be a positive constant satisfying (3.52). Then
for any p € Z, there are C > 0 and q € Z such that

(3.66) ‘v|p7§€0’p(070) < Cpqan’Pp(s,Ds,Dy)v\qﬁsw(o’o) for p > po and

v(s,y) € C(R"™) with suppv C {(s,y); t(s;p) >0},

where QEW(O,O) is defined by (3.61), ¢ is a positive constant defined as
Lemma 3.5, and P,(s,0,n) is defined by (3.51).

PROOF.  Let v(s,y) € C(R"™) satisfy suppv C W, where W =
[—5s0, 80] X {y € R™; |y| < 1}. Put

up(t, ) = v(p™(t —to = T(p™")), p~""H'a).
Then we have
P(t, Dy, Dy )u,(t, x)|t:t(8;p),:c:w(y;p) = Py(s, Dy, Dy)v(s, y).
It is obvious that
(5,9) € Qe (0,0) & (t(s3 p), (Y3 ) € Dy (o + T(p™"),0).

Therefore, Lemma 3.5 proves the lemma. ]

We factorized P(t, 7,€) as (3.45). Then we have

P,(s, Dy, Dy)(exp[z’sp‘sl’iy “Z(p™)ul(s))

= expliep” "y - E(p""){ P, (s, Ds,ep" "E(p™")) - -+ P~ (s, Dy, ep” "E(p "))
x Pyotl(s, Dy,ep” Z(p™")) - Py (s, Ds,ep” "E(p™"))
< PI(s, Day2p"Z(5")) + Ryl5, Duv S0~ Ju(s),

where R,(s,0,n) = R(t(s;p), p’*c,p'~%*n). For P¥o(s, Dy, D,) we con-
structed asymptotic solutions {vn(s,y;p™t,€)}nez, satisfying (3.59) and
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(3.60) with an obvious modification when at least one of Case A, Case C
and Case D occurs. Here we should choose £ appropriately. In Case B we
constructed asymptotic solutions {vn(s,y; p7', €) }nez, satistying (3.59) and
(3.60) with 30k + 214 in the exponent replaced by 2 — sk + dk. In (3.60) we
replace 1 by €. Note that

By (s, DS,D )E(s,y; p, €, v0, 0)uls ))

= expliep”™y - E(p~")| P (s, Ds,ep” "E(p™"))(E(s, 05 p, £, 0, 0)u(s)),
Ry(s, Ds, Dy)(E(s,y; p, €, v0, p)u(s))

= expliep” "y - Z(p )| R,(s, Da, £p” *E(p™"))(E (s, 0; p, €, vo, 0)u(s))
= O(p™) uniformly in [~s¢,0] as p — co ( M € N)

for u(s) € C*°([—so,s0]). Therefore, Lemma 3.10 proves Proposition 3.6,
since the asymptotic solutions {vn(s,y; p™ ', €)}nez, violate (3.66).

LEMMA 3.11. Assume that 1 < ko < r and m(ko) = 3, and that the
Cauchy problem (CP) is C* well-posed and has finite propagation property.
Let (t, &%) € [0,61/2] x (TNS™ 1Y), and let T(0) and Z(0) satisfy the condition
(T,=).

(i) We have
3.67 Ord i to+7T(0) —
( ) How seRor(Iél(fgl);pkO)’ ’ (6) = 5|
x sub (P)(to + T(6), A% (-) — ai*(-)/3,2(6))
> Ordgyo hin—1(to + T(0), A¥(-) — ai°(-) /3, Z(0))"/?,

(3.68) Ordgyp  min  [to +71(0) — s
sER0(E(0);p*0)

% (Orsub o(P))(to + T(0), A™(-) — a1"(-)/3,=(0))
> Ordgwa ( )1/2
(= Ordoyo hinsz(to + T(9), A™(-) — a1"(-) /3,2(6)) "),
where A*(t,€)is defined by (3.9) with k = ko and (-) = (to + T(9),Z(0)).

(ii) Assume that 79 € R and (0-p*)(to,70,£°) = 0 (I = 0,1,2), and put
20 = (tg,70,£°). Then we have

(3.69) Ordgy  min  |tg + T(0) — s|?
sER0(2(0):p"0)

X Q<t0+T(8)7 ( ) )/3’5 0) )
> Ordyyo hum_a(to + T(6), —a1(-; 2°)/3,2(0))?,

where (+;2°) = (to + T(0),=(6); 2°).
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REMARK. (i) On the assumption that the factorization (2.3) is given near
t = 0, the lemma is stated. Therefore, if for ¢y € [0,00) the factorization of
p(t,7,€) is given in a neighborhood I of ¢y, the lemma is valid with [0, d;/2]

replaced by a compact sub- 1nterva1 of } (ii) We note that p(t,7,&;2°) =
pro(t,7,€) and a1 (t, &; 2°) = a(t,€) in the assertion (ii).

PrROOF. From (2.5) it follows that
(3.70) sub o(P)(+) = sub o(P*) () (+)
+ S sub o(PY)OP (Mg () + O(ms()V2).

1<k<r, ketko

where (-) = (to + T(6), A% (-) — af*(-)/3,Z(6)). On the other hand, by (1.1)
we have
(371) hmfl(ta T, 5) = h‘?(t>7—7€;pk0)ﬂ{ko}(ta T, 5)2
+ ha(t, 7, & /PP (8,7, 5)

(3.72) Ordgyo p*(to + T(0), A (-) — af(-)/3,2(0)) = 0 if k # ko,
where hy(t,7,&;p) = 0if I < 0, and (-) = (to + T(0),=(0)). Corollary 3.7,
(3.70) and (3.71) prove (3.67), since

Ordgo p* (to + T(0), A¥(-) — af*(-)/3,2(0))?

> Ordgjo ha(to + T(0), A™ () — ay°(-) /3, Z(0); p*)

if 0 < Ordgyop™(ty + T(0), A (-) — af*(-)/3,2(0)) < oo, where (-) = (to +
T(9),Z(0)). It follows from (2.5) that

[1]

(3.73)  O-sub o(P)(t,7,&) = Orsub o(P*)(t,7,€) - Wy (£, 7, €)
+ sub o(P*)(t, T, £)0- 11y (¢, 7,6)

+ Y A0 7 - sub o (Pt 7, )Tk, iy (1,7, €)
1<k<r, k#ko
+ p"(t, 7, €)0-(sub o (t, 7, E) gy iy (8, 7, €))}
Z {a‘r{pk?pko}(ta T, 5) . H{ko,k}(ta T, 6)
1<k<r, k#ko
+ {0 "} (t, 7, )0 My ey (8,7, )}
T I G A RSB IR N3] PR
1<k<I<r, k,l#ko
+pk0(ta7_a S)aT({pk7pl}(ta7—a S)H{ko,k,l}(t77—7 5))}

DN | .
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Corollary 3.7, (3.72) and (3.73) prove (3.68), since

(@1 0rp)(t,7,€)| < Cha(t, 7,6 p")? ifl=1,2and p+v =1,
hm72<t7 T, g) = hl(t7 T, 57 pk0>H{k0}<t7 T, 5)2
+ o (t, 7,6 P ha (8,7, & p/D) + huns (87, & p/ P )™ (2,7, €)%
Next let us prove the assertion (ii). Corollary 3.7 yields

Ordgyy _ min  [to +T(0) = s*sub® o(P*)(-) = Ordyyo b ("),
sERo (E(@) ;pkO )

where (- = (to + T(0), —a%(to + T(#),Z(0))/3,Z(6). The repetition of the
above argument and (2.26) prove the assertion (ii). O

3.3. The double characteristic factors

Fix j and ko so that 1 < j < Ny, 1 < ko < r(j) and m(j, ko) = 2. In this
subsection we omit the subscript j and the superscript 7 in the same manner
as in §3.1. We also omit the superscript kg until Lemma 3.14. Write

pt,7,€) (= P (t,7,€)) = T2 + ar(t, )T + aa(t, 6),
ﬁ(t>7—7 5) = p(t,’r - al(tﬁg)/27£) = 7_2 - dQ(ta 6)7
P(taTa 5) = p<t77—a g) + QO(taTv é) + QI(taTv f)a

where qo(t, 7, ) is positively homogeneous of degree 1 in (7, &) for [£] > 1 and
dZ(tv é) = al(tv €>2/4 - a2(t7 5) ( = 0)7

QO(tha 6) = bO(tag)T + bl(taf) € 811,7([))([07 61] X ((F U (_f)) \ {O}))a
Q(t7,6) = co(t. )+ et €) € Sy (10,0:] x (TU (=T)) \ {0})).

Here we assume that P(t,7,€) (= P*(t,7,€)) is defined for £ € (=T)\ {0}
as stated in §3.1. We also write

dO(t>T7 5) = qO(t>7— - a'l(tvg)/27§) = bO(tvg)T + gl(ta f),
Bl(tvg) = bl(t7£> - al(tag)bO(tv é-)/2

Note that
hl(tv T — al(t7 6)/27 fap) = hl(ta T, 67]5) = 27_2 + 2&2<t7 5)

Let to € [0,01/2], £ € TNS™ ! and 6y > 0, and let T'(), Z;,(6) € C>((0, 6o])N
C([0,60]) (1 <1 < n) bereal-valued functions satisfying the condition (7, Z).

79



(I) The case where ay(t,Z(0)) #Z 0 in (¢,0).
Applying the Weierstrass preparation theorem, we can write

no

ao(to +t,2(0)) = 0°d(t,0) [ [t — :(0)), d(t,0) # 0

i=1

for (t,@) S [—50,50] X [0,00], where 0 < (50 < 51 — 1o and t1(9> = tz<9,t0,5)
The ¢;(#) can be expanded into convergent Puiseux series of 0 in [0, §y], with
a modification of 0 if necessary. Note that

Ro(E(0)) 2 {(to + Reti(0))4; 1 <i <no} (=Ro(E(0);2)) (0 € (0,60]).

(IT) The case where ay(t,Z(0)) = 0 in (¢, 0).
We have p(t, 7,2(0)) = 72, and put

Ro( () )—@(CR()( (9))), TL():O and ZDZOO.

Now we define

(= filto, €, T, E)) = (Ordgy aa(to + T'(0),2(0))) /2,
(= (b, 6%, T, 2))

= Ordygo RH(HH ) to +T(0) — sla(ty +T(0),2(0)),
s€Ro

5 (=0(to, 0, T, Ord i to + T(0) —
(=6(t, &, T,2)) = 1"6¢056RIOT(1§(19M|0 (0) — 5|

(= max Ordg,o [to + T(0) — (to + Reti(0))+]),

1<i<n

where R
a(t,§) = bi(t,§) + idai(t, ) /2
and 0 = 0 in the case (II).

ProposiTiON 3.12. [If

(374) w1 < i,

then the Cauchy problem (CP) is not C* well-posed or (CP) does not have
finite propagation property.

COROLLARY 3.13. Assume that the Cauchy problem (CP) is C™ well-
posed and has finite propagation property. Let (to,£%) € [0,81/2] x (TNS™1).
Then we have

la(tl% 507 T7 E) < H1 (t(]? 507 T? E)

if T(0) and Z(0) satisfy the condition (T, Z).
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In the rest of this subsection we shall prove Proposition 3.12. Assume
that (3.74) is satisfied. Then we have § < pu; < oo and 0 < i ( < 00). There
is ¢g > 0 such that

min |to + T(0) — (to + Reti(0)),] > cof® for 6 € [0, ).

1<i<ng

In the case (II) we may take ¢y = 1 since ng = 0. For v € R we define T,,(0)
by (3.49). In the case (I) we have

as(to + T,(0),2(0)) = 0*(d(v) + o(1)) as 6|0,
where d(v) # 0 is a polynomial of v with real coefficients. It is obvious that

d(v) >0 forv e [—cy/2,¢0/2],
as(to + T,(6),2(6)) "2 = 0"(\/d(v) + o(1))

uniformly in v € [—¢y/2,¢0/2] as 6 | 0.
Noting that a(t,Z(0)) #Z 0 in (¢,0), we write
alty + T,(0),Z(0)) = 0™ ~°(dy(v) +o(1)) as 0,

where 1 € Q and d;(v)(# 0) is a polynomial of v. There are vy €
(co/4,co/2) and sy > 0 such that Iy = [vg — s, vo + So| C [co/4, co/2] and

dl(U) 7A 0 forove I().

We replace T'(0) by T,,(0). We note that 6 = ji; = 0 and ¢o = 1 if i1 = oo,
Then we can assume that Iy = [—So, So|, 11 = i1 and pg < fi. Similarly, we
make an asymptotic change of variables as (3.50), where ¢’ € (0,1), K > 0
and ¢’k < 1. Let K be a compact neighborhood of (¢p,0) in R x R”, and
choose py > 0 so that (3.52) is satisfied. Define

P,(s,0,n) = P(t(s; p), 00, p'~""n),
and put
(s, y; p) = —pl‘s”/ ai(t(u; p), E(p™")) du/2 + p" "y - Z(p~"),
0
E(s,y; p, €, v0,0) = explie®(s,y; p) + 107 0(s; )],
where ¢(s; p) (€ C*°([—s0, so]) for p > py) satisfies

0ho(sip)l < Ci for I € Zy and (s p™") € [—s0,50] x (0,5,
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e ==1 and 1y > 0. A simple calculation yields

ﬁ(s, Dg; p, E)u(s) = E(s,y; p,v0,0) " P,(s, Ds, D)) (E(8,y; p, 10, p)u(s))

= E(5,0; p,v0,) ' P(t(s; p), p" Dy, epZ(p~")) (E(s, 0; p, v, p)us))

= [P0 0ol p)) o ep T (P ()) + 20 (D) D+ PR
o)) = ip™ 0 (920) + P b (1) (Dsp + p 7 Ds)

+ co(t(s; p),epE(p~ )))( epay(-)/2 + p " 0up + p** D)

+ a1(t(s; p),ep=(p™"))uls),

where (-) = (t(s;p), Z(p™")). We choose

p2 2;“@( 2;1/1

= (1 -k —6k)/2, k= (0+min{u +1,2})""
Then we have
20k + 21y =1 — Kk + 6k, 1 —0k =min{yuy + 1, i}k,

vo =min{l, i —m}r/2 (>0), 1y<1/2,
20Kk 4+ 2vp — (2 — 2ak) = 29 — 2min{l + 1y — 1,0}k > 2.

Put A
plsip) = [ (o Sat(ui ), 2o )] du
0
Here we have chosen ¢(s; p) and € = £1 so that

Im[— (" a(t(u; p), Z(p~")))]"* < 0.
Writing u(s; p~!) as (3.56), we obtain the following transport equations for
u(s; p~t):
{200s(51 ) Ds = i(020) + p~"bo() (Dssp) Yun (s p7")
D3 = PR (2053()) 4 5Oy (D,
+p " eo( ) (—epar () /2 + p" 0 0up + p D)
_'_pi%n ( ")}uk*1<53p71) ( k:O71727"')7
where () = (t(s;0),Z2(p™)) and (---) = (t(s; p),ep=(p~")). Note that, with

some C), > 0,

(0 D) erlt(s; p),epE(p~")| < Cup' ™" (1=0,1).

Therefore, applying the same argument as in §3.2 we can prove Proposition
3.12. The same argument as in the proof of Lemma 3.11 and Proposition
3.12 prove the following
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LEMMA 3.14. Assume that 1 < ko < r and m(ko) = 2, and that (CP) is
C> well-posed and finite propagation property. Let (to,£%) € [0,6,/2] x (I'N
S™1), and let T(0) and Z(0) satisfy the condition (T,=). Then we have

Ord i to+71(0) —
oo min o+ T(0) = 5|
x sub o(P)(ty + T(0), —ay° (to + T(6), 2(6))/2,=(0))
> Ordgyo hun—1(to +T(9), —a” (to + T(9),=(6)) /2, 2(6)) /2.

[I]

3.4. Proof of Theorem 1.3

Let n = 2, and let (£,£") € (0,00) x S'. Let a(t,&) and b(t,€) be
real analytic functions defined in a conic neighborhood C of (t,£%). We
assume that a(tg, &%) =0, a(t,€) >0, a(t,€) # 0 in C and a(t,€) and b(t,§)
are positively homogeneous in €. Choose e € S, § = 6(t0,£%) > 0 and
o = 0(to,£%) > 0 so that e 1 £, and

{(t,Z0(0)); (to—6), <t <to+dand|f <6} CC,
where Zo(0) = Z0(6; &, €) = (€° + 0e) /|0 + be|. We write
ao(t7 6) = CL(t, §0(9>>7 bo(ta 6) b( ) ‘—'0(‘9))

Then we have -

a’(t,0) =) _ap(t)*, ap(t) £0,

k=lo

where [y € Z. By the Weierstrass preparation theorem there are ro € Z, a
real analytic function °(¢, #) defined in [0, 6], real-valued continous functions
72(0) and o2(0) (1 < k < rg) defined in [0, 6] such that °(t,0) > 0
72(0) = 00(0) =0 (1 < k < rg), the 7() and o2(#) can be expanded into
convergent Puiseux series in [0, 6],

(O0) <70) < <7 (0), 0)(0) 20 (1< k<)

a’(t,0) = 0" (t,0) [ [{(t — to — 72(0))” + 02(0)} (6 € [0,6)]),

with a modification of 6 if necessary, where a’(t,0) = 0c0(t,0) if ry = 0.
Define

0 T[{(t—to—7(0)) +00(0)} ifro>1,
k=1 Ik
g'o if 7o < 1,

(3.75) d°(t,0) =
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R(6: ) F%+ﬁWH4M@@}1SkSM}ﬁMZL
) —
’ 0 if rg = 0.

LEMMA 3.15. There is C' > 0 such that

C™' min |t — M/d(t,0) < \/a (¢, 0)

AER(6a%)
< C min |t — \/d°(¢,0)
AER(0;a0)

fort € [(to — )4, to + 6] and 0 € 0,00, with modifications of § and 6y if

necessary, where minyer(g.q0) [t = Al =1 if ro = 0.

PrROOF. When ry = 0, the lemma is trivial. Assume that ro > 1, and fix
(t,0) € [(to—9),to+ 0] x [0,60y]. We choose vy € N so that 1 < vy < rg and

2 o 2, 0
/\eguenao [t = A]> = (t — to — 7, (6))* + oy, (0).

Then we have
min |t — A?d°(t,0) = ((t — to — 7,,(0))* + op, (0))d°(, 6)
AER(6;a0)

< roa’(t,0) < in |t — \2d°(t. 0).
< roa(t,0) <o min |t —AFd(E,0)

[
Let 1 < k < 79. Suppose that »°(t,0) # 0 in (¢,0). We note that

to+72(0) > 0if 0 < § < 1, since ty > 0. Applying the same argument as in
§2 of [10], we can write

W (to 4+ 72(0) + t,6) Zﬁ (t)eFVL Bro(t) 0,

where L € N and v, € Q. We define the Newton polygon Fbo i of t'b0(to +
2(0) +t,0) for h =0,1,2 by

Che=ch| | (0 +ULR+ pe)} +[0,00%)],

120, pge,1 <00

where

frr = Ordejo By (t)
and ch[A] denotes the convex hull of A. If v°(¢,0) = 0 in (¢,6), we define
F{jo’k = ( see, also, §§2 and 5 of [10]). We also denote by I'yo s, the Newton
polygon of a®(ty + 72(6) + ¢, 0).
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LEMMA 3.16 (Lemma 2.2 of [10]). Fiz h € {0,1,2}. The following two
conditions (i) and (i) are equivalent:

(i) If T(9) is a real valued continuous function defined in [0,6q], T'(6) €
C*>((0,6y]), T(0) =0, to +T(0) > 0 for 6 € (0,600 and T(0) can be
expanded into a formal Puiseux series, then

Ordaw{ min [7(0 )_Tk< )| ‘bo(t +1(0),0)|}

1<k<ro

> Ordgyo v/a%(to + T(6),0).

(ii) 2F1};LO,/§ Clpr (1<k<my) (see, also, Lemma 3.3 of [12]).
LEMMA 3.17. Fiz h € {0,1,2,}. Assume that
200, C oo (1 <k <)
Then there is C' > 0 such that
min e (10 + 7O) ()] < OV 0
fort € [(to—90)y,to+ 6] and 6 € [0, 6],
with modifications of § and 0y if necessary.

We proved Lemma 3.17 with A = 1in §5 of [10]. Lemma 3.17 with h = 0, 2
can be proved by the same arguments as in §5 of [10].

We assume that the Cauchy problem (CP) is C'* well-posed and has finite
propagation property. We factorize p(t, 7,&) as (2.3):

p(t,7,8) = H;ﬂ (t,7,€) for (t,7,€) €[0,0:] x R x (T; n.S"1)

(1<j < Np). Fix jsothat 1 < j < Nj. Assume that 1 < ky < r(j) and
m(j, ko) = 3. Until the end of this subsection we omit the subscript j and the
superscript j in the same manner as in §3.1. Now assume that a5 (¢, €) # 0
in (¢,€). It follows from (3.11), (3.47), Corollary 3.7 and Lemmas 3.16 and
3.17 that (3.6) and (2.19) with R(&) replaced by Ro(&) hold for k = k.

LEMMA 3.18. Let (t5,£°%) € (0,6,/2) x (TN S™1), and let T(0) € C>((0,
0o]) N C(]0, o)) be a real-valued function satisfying the following:

T0)=0, to+T1(0)>0 for6ec]|0,00 and

T(0) can be expanded into a formal Puiseux series.
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Then we have

(3.76)  Ordgyo{ RII(léIl . lto + T(0) — 5|
x sub o (PR)(to + T(6). (a5°(-)/2)'* = a1"(-) /3, E0(0))a5"(-)}
> Ordgyo(D5°(1)a5°(+))"?,

where () = (to +1(0),Z0(6)).
PROOF. (3.42) yields

(a5°(t,€)/3)halt, (a5 (£, €) /2)'7?, & 5™) /> < (D (¢, €)(a5° (¢, €)/3)) 2.

Therefore, the lemma easily follows from Corollary 3.7, (3.11) and (3.30) —
(3.32). O

We may assume that Di0(t, &) # 0 in (t,€). Indeed, if D5°(t, &) =
0 in (t,€), then Lemma 3.18 implies that sub o(P*)(t, (ak(t,£)/2)Y/3 —
a¥o(t,€)/3,€) = 0 in (¢,€) and, therefore, (3.5) holds. Taking a°(t,0) =
D (t,Z0(0))ako (t,Z(6)) in Lemma 3.15, Lemma 3.15 implies that (3.5) are
valid if and only if

[(@5°(-)sub o (P*(t, (a5°(-)/2)"* = a}°(-) /3, E,(0))’] < d°(1,0)

for each (to,&") € [0,01] x "' with DE(t9,£%) = 0 and (t,0) € [(t, —
0) 4, to + 0] x [0, 0], where () = (t,Z0(0)) and d°(t,0) is defined by (3.75),

since R(6;a’) = Ro(Zo(6); p*). Choose L € N so that 7°(s) + iy/a?(sh)
(1 <1< rp) are real analytic in a neighborhood of s = 0. We put

d(t,s) = d°(t,s¥), a(t,s) = ako(t,Zy(s))/2

which are real analytic in (£, s). Moreover, d(t, s) is a polynomial of ¢. Note
that d(t, s) depends on (ty, £2). It follows from Hironaka’s resolution theorem
that for each (o, &%) € (0,0,/2] x S™! with D5 (ty,£%) = 0 there are an
open neighborhood U (ty) of (t,s) = (to,0) in (0,01] X R, a real analytic
manifold U(t,), a proper analytic mapping ¢ = ¢ (to) : U(ty) 3 @ — () (=
p(u;tg)) € Ulty) satisfying the following:

(i) ¢:U(to)\ A — Ult) \ A is an isomorphism, where A = {(¢,s) € U(ty);

a(t,s) =0} and A = p 1(A).

(ii) For each p € U(ty) there are local analytic coordinates X (= X?) =
(X1, X2) (= (XP,XD0)) centered at p, ki,ke € Zy, a neighborhood
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Ulto:p) of p ‘and a real analytic function e(X) in V (to;p) such that
e(X) #0in V(to;p) and
a(p(@)) = e(X (@) X1(0)" Xa(@)™ (@ € Ulto; p)),

where V(to;p) = {X(i0); @ € U(to;p)} ( see [1]).

Define ¢ (= @(to;p)) : V(to;p) = Ulto) by ¢(X()) (= ¢(XP(@);to,p)) =
p(a) (= p(a;to)) for @ € U(to; p). Then we have
W(P(X)) = e(X)XTX52 (X € V(to;p)).

Putting X; = X? (1 =1,2), we have

A (X)) = (X7, X3)PX[ X5 (X € VO(to; p)),
where *(X) = ¢(X},X3) and Vo(to;p) = {X = (X1,X0); (X}, X3) €
V(to;p)}. Put Ulte;p) = {p(a); @ € Ulto;p)}, a®(X) = a(¢"(X))"/* and
V(X)) = (t(X),s(X)). Then

(3.77) min{ min |t —v|,1}

vER(Eo(sL);pk0)
X Jsub a(PR)(t, (a5°()/2)""* — ai*()/3, Zo(s"))]
< Chyl(t, (a5°(-)/2)'?, Zo(s"); p*) /2 for (¢, ) € Ulto; p)
if and only if
(3.78) |B(X)? < Cd(t(X),s(X)) for X € V(to: p),
where () = (t,Zo(s%)) and
B(X) = @ (-- - )sub o (P*)(H(X), a(X) = ai"(-++), Zo(s(X)"),
() = t(X), Eo(s(X)"))-

Note that d(t(X), s(X)) and B(X) are real analytic in VO(to;p). Let X (6)
be real analytic near § = 0. Then it follows from (3.76) that

Ordgyo d(t(X (), s(X(0)))/2 < Ordgy B(X ().
Lemmas 3.16 and 3.17 with 0%ty + t,0) = B(X), a’(to + t,0) = d(t(X),

s(X)), (t,§) = X and h = 0 yield (3.78) and, then, (3.77). Let I be a
compact sub-interval of (0,0,/2]. Applying compactness argument, we can
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prove that (3.5) holds with [0,d;] and R(&) replaced by I and Ry(&;p™),
respectively. Therefore, Lemma 3.2 shows that (3.4) holds with [0,0,] and
R(€) replaced by I and Ry(€), respectively. Next assume that a5 (t,&) = 0
in (t,€). Then (3.11) and (3.12) yield D¥(¢,€) (= DFo(t,€)) = 0 in (¢,£).
Similarly, (3.4) and (2.19) hold with R(§) replaced by Ry (§). Let 1 < j < Ny
and 1 < ko < r(j) satisfy m(j, ko) = 2. Applying Corollary 3.13 and the
same argument as before, we can prove that (3.33) with R(&) replaced by
Ro(€) holds. Since (2.19) holds with R(§) and [0, d;] replaced by Ry(€) and
I, respectively, as proved above, Lemma 2.5 proves Theorem 1.3 with I C
(0,81/2]. The interval (0,0,/2] is determined by the factorization (2.3). So,
finally one can prove Theorem 1.3 ( with any compact interval I C (0, 00)).

3.5. Proof of Theorem 1.4

Assume that the hypotheses of Theorem 1.4 are fulfilled. Let 1 < 7 < Nj,
and let (f,&%) € [0,01/2] x (I; N S™1). We fix | = 1 or 2. Let h(t,¢)
be defined in a semi-algebraic set U in R"™'. Then we say that h(t, &) is
a semi-algebraic function if the graph of h(¢,€) is a semi-algebraic set. Let
a(t, &) and b(t, &) be semi-algebraic functions defined in a conic neighborhood
of (to,£%). We assume that a(t,£) and b(t, &) are positively homogeneous in

A

¢, a(t,&) >0 and a(ty, %) = 0. Choose § > 0 so that
Dy = (1,6 |t —to 16— €P <& Je| = Land ¢ > 0}  [0,5] x T,

We may assume that a(t,£) and b(¢, ) are defined in D;. Then we say that
the condition (A-B); is satisfied if

(A-B); there are § € (0,6] and C' > 0 satisfying
min{ I%iI(lg) it —s|', 1Y|b(t, &) < C/a(t,€) for (t,€) € Ds.
s€Ro

LEMMA 3.19. Assume that the condition (A-B); is not satisfied. Then
there are 6y > 0, T;(0),ZL(0) € C*((0,60)) N C([0,60])) (1 < k < n) such
that Ty(0) and Z4(0) (= (Z4(0),--- ,ZL(9))) satisfy the condition (T,=) and

n

(379) Ordg‘Lo Hlln{ RHl(LIll(e)) |t0 + 7}(9) — 3|l7 1}|b()| < (Ordgio a())/27
seRo(=

where (-) = (to + T;(0),Z(9)).
PROOF. Let § € (0,4]. Define

A={(t,&y) € DsxR; y=alt,§)},
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B ={(t,¢y) € Ds x R; y = [b(t, )},
Cr={(t,&y) € Ds x R; y=min{ min |t — s/* 1}}.
sE’Ro(g)

It is obvious that A and B are semi-algebraic sets. Put

So={¢e€ 5" €€ < and Dy(so,€) # 0 for some sy € [0,00)},
Er={cec 5" 1€ - € <0, Dy—psa(s,€) =0 for any s € [0, 00) and
Dyr—k(50,&) # 0 for some sg € [0,00)} (1< k< M).

Since the Dy(t, ) are semi-algebraic, the = are semi-algebraic set, Z,N=, =

(0 if u # v, and
M

Usi={cesm [¢-¢ <4}
k=0
Choose ¢’ € (0, 1] so that
{t+iteC; te[-d,to+2], e Rand |7| <} CQ,
where 2 is the complex neighborhood of [0, 00) as appears in §1. We define

Dk :{(t7€) € R X Snil; £ € Ek7 DM*k<t1 _'_7/7—75) = 07 tl € [_6/7t0 +2]7
re[-0,8], t >0, t=t7and t = (t; +13)/2} (0<k < M),

M
D= U Dy.
k=0

Note that Dy, = (0. Then we have

Cr={(t,&y) € Ds; “(5,§)€Dors=t—17,
|t — 3\2 > |t — §|2 for any (s,§) € Dand y = |t — 3]21}.

This shows that C} is a semi-algebraic set. Put

Ay ={(p,t,&,\) € R"3; there are y, u,v,w € R satisfying

(tafay) € A: (t7§7u> € Ba (t,g,'l}) € Cla PY = 17
w(([t —to]* + 1€ — %) puv + 1) = 1 and A = puvw}.

Then A; is semi-algebraic and

Al :{(p7t7£a )\> S R x D(; X ];{7 pa(t75) — 1’ and
A= 1ind{ min 75_52l71 b t, 2
pmin{ min [t —s*, 1}[b(,€)|
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x (|t = tol* + |§ = €°*)pmin{ min |t —s[*, 1}[b(t, )" +1)7'}.
SERo(g)
For p > 0 we define

K(p) ={(t,€) € Ds; pa(t,§) = 1}.

Then K (p) is compact and there is py > 0 such that K(p) # 0 for p > py.
Indeed, we can take

po' = max{a(t,€); (,€) € Ds},
since a(tg, &%) = 0. This yields
{p € R; (p,1,€,A) € A, for some (t,6,1) € R"} D {p; p > po}.
Therefore, we can define
(3.80) fi(p) = sup{X; (p,t,€,0) € Ay for some (¢,€) € R*™Y for p > po.

Note that

filp)

2
= max{

pmin{minger, e |t — s|2, 1} b(t, €) .
(|t = to]? 4 1€ — £°12) p min{minger,e) [t — s[*, 1}[b(t, &) > 4 1)

(t,€) € K(p)},

since K (p) is compact. It follows from Theorem A.2.8 of [3] that there are
=l

continuous functions 7;(p), Z'(p) and A (p) such that Tj(p), E-(p) and A (p)
can be expanded into convergent Puiseux series for p > 1 and

(3.81) (p,to + Ti(p), ' (p), M(p)) € A1y filp) = Ni(p) (= 0)

( see, also, [7]). Since the condition(A-B); does not hold, there is {(t, &%)} C
Dj satisfying (¢, &%) — (to,£°) and

(3.82)  min{ min |t; — s|', 1}|b(tx, €5)|/a(ty, E)? = 00 as k — 0.
SERU(ék)

Put 0 = (|t —to|>+ €% —€°1>)Y/2 and py, = a(ty, £F)~'. Then we have §; — 0
and py — 00 as k — 0o. (3.81), together with (3.80) and (3.82), gives

Ai(pr) > prmin{ min |t; — s|2l, l}lb(tk,fkﬂ?
SGRQ(&’“)

x (02ppmin{ min |t — s[*, 1}b(tg, )P + 1) = 00 as k — oo,
SERo(fk)

90



since 0y — 0 and pj, min{mingeger [t — s|*, 1}b(tx, £¥)[* — o0 as k — oo.

So we have \j(p) — 0o as p — oo, which implies that
min{ min |to+ T;(p) — s|', 1}
SER()( ()
x |b(to + Tilp), ' (p))lalto + Tu(p), E(p))~1/* = o0,
(Ti(p), Z'(p) — (0,€")

as p — oo. There is L € N such that Z!(p%) is real analytic in p ( > pt/").
We put Ty(6) = T;(§~%) and EL(0) = Z4(4~L). Here, if to+T;(6) = 0, then we
replace T;(0) by T;(6) + 6V, where N > 1. We note that Z,(0) (1 < k <n)
are real analytic in 6 € [0, 6], where 0y = p, YL Then we have (3.79). O

First we assume that 1 < ko < r(j) and m(j, ko) = 3. We take

a(t, &) = hu_y(t, AP0 (2, ) — al™(¢,€)/3,€),
b(t, &) = sub o(P)(t, A*o(t, &) — al™(t,€)/3,€)

and [ = 1, where

ARt €) = Mot €) (@)™ (t,€)/3)" 2,

]ko(t 5) 1 if Ajko( §)>1|’
v =

(‘see (3.9)). It is easy to see that the coefficients of the polynomial p/*o (¢, 7,
€) of 7 are semi-algebraic. It follows from Lemma 3.19 that there are 6, > 0,
T(0),Z(0) € C=((0,6p]) N C([0,60]) ( 1 < k < n) such that T'(f) and
20) (= (Z21(0),- - ,Z,(0))) satisty the condition (T, Z) and
Ordgw{mln{ Hllll(g lto +T'(0) — s|,1}
x sub o(P)(to + T(9), A7 (-) — a}*™(-)/3,2(0))}
< Ordgyo hm-1(to + T(9), AP () — a}™()/3,2(6))"/?

if the condition (A-B); is not satisfied, where (-) = (to + T(0),Z(6)). There-
fore, Lemma 3.11 implies that the condition (A-B); is satisfied if the Cauchy
problem (CP) is C'° well-posed and has finite propagation property. Next
we take

(389 {a(t,o = " (1.).

b(t, &) = (Orsub o(P))(t, Ao (t,€) — al™(t,€)/3,€)
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and [ = 1. Similarly, we can see that the condition (A-B); is satisfied if

a(t,&) and b(t,&) are given by (3.83) and (CP) is C* well-posed and has

finite propagation property. Let 20 = (tg,70,&°%) satisfy (9¥p)(z°) = 0 (

p=0,1,2) and p*o(z°) = 0. We take

(3 84) CL(ta g) = hm72<t7 - (ta g; ZO)/Sv é)a
b<t7 5) = Q(t7 _al(tu 57 ZO)/37 ga ZO)

and [ = 2. It is easy to see that the coefficients of the polynomials p(t, 7, &; 2°)
and Q(t,7,&; 2°) of 7 are semi-algebraic. Similarly, we can see that the con-
dition (A-B), is satisfied if a(t,£) and b(¢, ) are given by (3.84) and (CP) is
C* well-posed and has finite propagation property. This implies that (L-2)
for [0, d1/2] is satisfied if (L-1) for [0,0,/2] is satisfied. Now we assume that
1 < ko <r(j) and m(j, ko) = 2. We take

{a(t,@ = B (t, —a}*(,€) /2, €),

(3.85) b(t, &) = sub o(P)(t, —al™(t,€)/2,¢)

and [ = 1. Repetition of the above argument and Lemma 3.14 shows that
the condition (A-B); is satisfied if a(t,£) and b(t,&) are given by (3.85)
and (CP) is C*° well-posed and has finite propagation property. It follows
from the above results and Lemma 2.3 that (3.7), (3.8) and (3.34) hold for
(t,€) €10,8,/2] x (T; N S"1), since

ho(t, APF(t,€) — al*(£,€) /3,6 p™F) & hya (8, APF(, ) — a]*(£,€)/3,€)
for (¢,€) € 0,6, x (T; NS™ 1) if 1 <5< Ny, 1 <k <7(j) and m(j, k) = 3,
and
2&%16(757 5) (: hl(ta _a{,k(ta 5)/27 §>p]7k>> ~ hmfl(ta _a{’k(ta 5)/27 6)

for (t,€) €[0,6;] x (T; N S™ 1) if 1 <j < Ny, 1 <k <r(j) and m(j, k) = 2.
Therefore, Lemma 2.5 implies that (L-1) for [0, §; /2] is satisfied, which proves
Theorem 1.4 with 7" = §;/2. The interval [0,0,/2] is determined by the
factorization (2.3). So, finally one can prove Theorem 1.4 ( with I = [0, 7]

for any 7' > 0).
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