Remarks on Propagation of Analytic Singularities and Solvability in the Space of Microfunctions

Seiichiro Wakabayashi (University of Tsukuba)

1. Introduction

Let P be a linear partial differential operator on \mathbb{R}^{n} with C^{∞} coefficients, and let $x^{0} \in \mathbb{R}^{n}$. In Treves [5] and Yoshikawa [8] it was proved that if P is hypoelliptic at x^{0}, then there is a neighborhood U of x^{0} satisfying the following; for every $f \in C^{\infty}(U)$ there is $u \in \mathcal{D}^{\prime}(U)$ such that ${ }^{t} P u=f$ in U. Here ${ }^{t} P$ denotes the transposed operator of P. Hörmander [3] generalized their results (see Theorem 1.2.4 of [3]). Recently Albanese, Corli and Rodino proved in [1] that the result of Treves and Yoshikawa is still valid in the framework of the Gevrey classes and the spaces of ultradistributions. Moreover, Cordaro and Trépreau proved in [2] that Hörmander's result can be generalized in the space of hyperfunctions for partial differential operators with analytic coefficients. In particular, they proved that P is locally solvable at x^{0} in the space of hyperfunctions if the coefficients of P are analytic and P is analytic hypoelliptic at x^{0}. The aim of this article is to microlocalize their results for a pseudodifferential operator $p(x, D)$, i.e., if \mathcal{U} is a bounded open subset of the cosphere bundle $S^{*} \mathbb{R}^{n}\left(\simeq \mathbb{R}^{n} \times S^{n-1}\right)$ over \mathbb{R}^{n} and if $p(x, D)$ satisfies

$$
\begin{aligned}
& f \in L^{2}\left(\mathbb{R}^{n}\right), \quad W F_{A}(f) \cap \partial \mathcal{U}=\emptyset, \quad W F_{A}(p(x, D) f) \cap \mathcal{U}=\emptyset \\
& \quad \Longrightarrow \\
& W F_{A}(f) \cap \mathcal{U}=\emptyset
\end{aligned}
$$

then the transposed operator ${ }^{t} p(x, D): \mathcal{C}(\check{\mathcal{U}}) \rightarrow \mathcal{C}(\check{\mathcal{U}})$ is surjective, where $\check{\mathcal{U}}=\{(x, \xi)$; $(x,-\xi) \in \mathcal{U}\}$ and $\mathcal{C}(\mathcal{U})$ denotes the space of microfunctions on \mathcal{U}.

We shall explain briefly about hyperfunctions, microfunctions and pseudodifferential operators acting on them. For the details we refer to [6]. Let $\varepsilon \in \mathbb{R}$, and
denote $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$, where $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$ and $|\xi|=\left(\sum_{j=1}^{n}\left|\xi_{j}\right|^{2}\right)^{1 / 2}$. We define

$$
\widehat{\mathcal{S}}_{\varepsilon}:=\left\{v(\xi) \in C^{\infty}\left(\mathbb{R}^{n}\right) ; e^{\varepsilon\langle\xi\rangle} v(\xi) \in \mathcal{S}\right\},
$$

where $\mathcal{S}\left(\equiv \mathcal{S}\left(\mathbb{R}^{n}\right)\right)$ denotes the Schwartz space. We introduce the topology to $\widehat{\mathcal{S}}_{\varepsilon}$ in a natural way. Then the dual space $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ of $\widehat{\mathcal{S}}_{\varepsilon}$ can be identified with $\left\{v(\xi) \in \mathcal{D}^{\prime}\right.$; $\left.e^{-\varepsilon\langle\xi\rangle} v(\xi) \in \mathcal{S}^{\prime}\right\}$, since $\mathcal{D}\left(=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ is dense in $\widehat{\mathcal{S}}_{\varepsilon}$. If $\varepsilon \geq 0$, then $\widehat{\mathcal{S}}_{\varepsilon}$ is a dense subset of \mathcal{S} and we can define $\mathcal{S}_{\varepsilon}:=\mathcal{F}^{-1}\left[\widehat{\mathcal{S}}_{\varepsilon}\right]\left(=\mathcal{F}\left[\widehat{\mathcal{S}}_{\varepsilon}\right]\right)(\subset \mathcal{S})$, where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transformation and the inverse Fourier transformation on \mathcal{S} (or \mathcal{S}^{\prime}), respectively. For example, $\mathcal{F}[u](\xi)=\int e^{-i x \cdot \xi} u(x) d x$ for $u \in \mathcal{S}$, where $x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j}$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. Let $\varepsilon \geq 0$. We introduce the topology in $\mathcal{S}_{\varepsilon}$ so that $\mathcal{F}: \widehat{\mathcal{S}}_{\varepsilon} \rightarrow \mathcal{S}_{\varepsilon}$ is homeomorphic. Denote by $\mathcal{S}_{\varepsilon}^{\prime}$ the dual space of $\mathcal{S}_{\varepsilon}$. Since $\mathcal{S}_{\varepsilon}$ is dense in \mathcal{S}, we can regard \mathcal{S}^{\prime} as a subspace of $\mathcal{S}_{\varepsilon}^{\prime}$. We can define the transposed operators ${ }^{t} \mathcal{F}$ and ${ }^{t} \mathcal{F}^{-1}$ of \mathcal{F} and \mathcal{F}^{-1}, which map $\mathcal{S}_{\varepsilon}^{\prime}$ and $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ onto $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ and $\mathcal{S}_{\varepsilon}^{\prime}$, respectively. Since $\widehat{\mathcal{S}}_{-\varepsilon} \subset \widehat{\mathcal{S}}_{\varepsilon}^{\prime}\left(\subset \mathcal{D}^{\prime}\right)$, we can define $\mathcal{S}_{-\varepsilon}={ }^{t} \mathcal{F}^{-1}\left[\widehat{\mathcal{S}}_{-\varepsilon}\right]$, and introduce the topology in $\mathcal{S}_{-\varepsilon}$ so that ${ }^{t} \mathcal{F}^{-1}: \widehat{\mathcal{S}}_{-\varepsilon} \rightarrow \mathcal{S}_{-\varepsilon}$ is homeomorphic. $\mathcal{S}_{-\varepsilon}^{\prime}$ denotes the dual space of $\mathcal{S}_{-\varepsilon}$. We note that $\mathcal{S}_{-\varepsilon}^{\prime}=\mathcal{F}\left[\widehat{\mathcal{S}}_{-\varepsilon}^{\prime}\right] \subset \mathcal{S}^{\prime} \subset \mathcal{S}_{\varepsilon}^{\prime}$ and $\mathcal{F}={ }^{t} \mathcal{F}$ on \mathcal{S}^{\prime}. So we also represent ${ }^{t} \mathcal{F}$ by \mathcal{F}. Let $\mathcal{A}\left(\mathbb{C}^{n}\right)$ be the space of entire analytic functions on \mathbb{C}^{n}, and let K be a compact subset of \mathbb{C}^{n}. We denote by $\mathcal{A}^{\prime}(K)$ the space of analytic functionals carried by K, i.e., $u \in \mathcal{A}^{\prime}(K)$ if and only if (i) u : $\mathcal{A}\left(\mathbb{C}^{n}\right) \ni \varphi \mapsto u(\varphi) \in \mathbb{C}$ is a linear functional, and (ii) for any neighborhood ω of K in \mathbb{C}^{n} there is $C_{\omega} \geq 0$ such that $|u(\varphi)| \leq C_{\omega} \sup _{z \in \omega}|\varphi(z)|$ for $\varphi \in \mathcal{A}\left(\mathbb{C}^{n}\right)$. Define $\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right):=\bigcup_{K \in \mathbb{R}^{n}} \mathcal{A}^{\prime}(K), \mathcal{S}_{\infty}:=\bigcap_{\varepsilon \in \mathbb{R}} \mathcal{S}_{\varepsilon}, \mathcal{E}_{0}:=\bigcap_{\varepsilon>0} \mathcal{S}_{-\varepsilon}$ and $\mathcal{F}_{0}:=\bigcap_{\varepsilon>0} \mathcal{S}_{\varepsilon}^{\prime}$. Here $A \Subset B$ means that the closure \bar{A} of A is compact and included in the interior $\stackrel{\circ}{B}$ of B. We note that $\mathcal{F}^{-1}\left[C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right] \subset \mathcal{S}_{\infty}$ and that \mathcal{S}_{∞} is dense in $\mathcal{S}_{\varepsilon}$ and $\mathcal{S}_{\varepsilon}^{\prime}$ for $\varepsilon \in \mathbb{R}$. For $u \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ we can define the Fourier transform $\hat{u}(\xi)$ of u by

$$
\hat{u}(\xi)(=\mathcal{F}[u](\xi))=u_{z}\left(e^{-i z \cdot \xi}\right),
$$

where $z \cdot \xi=\sum_{j=1}^{n} z_{j} \xi_{j}$ for $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. By definition we have $\hat{u}(\xi) \in \bigcap_{\varepsilon>0} \widehat{\mathcal{S}}_{-\varepsilon}\left(=\mathcal{F}\left[\mathcal{E}_{0}\right]\right)$. Therefore, we can regard $\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ as a subspace of \mathcal{E}_{0}, i.e., $\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right) \subset \mathcal{E}_{0} \subset \mathcal{F}_{0}$, (see Lemma 1.1.2 of [6]). The space \mathcal{F}_{0} plays an important role in our treatment as the space \mathcal{S}^{\prime} does in the framework of C^{∞} and distributions. For a bounded open subset X of \mathbb{R}^{n} we define the space $\mathcal{B}(X)$ of hyperfunctions in X by

$$
\mathcal{B}(X):=\mathcal{A}^{\prime}(\bar{X}) / \mathcal{A}^{\prime}(\partial X),
$$

where ∂X denotes the boundary of X.
Let $u \in \mathcal{F}_{0}$. We define

$$
\begin{aligned}
& \mathcal{H}(u)\left(x, x_{n+1}\right):=\left(\operatorname{sgn} x_{n+1}\right) \exp \left[-\left|x_{n+1}\right|\langle D\rangle\right] u(x) / 2 \\
& \left(=\left(\operatorname{sgn} x_{n+1}\right) \mathcal{F}_{\xi}^{-1}\left[\exp \left[-\left|x_{n+1}\right|\langle\xi\rangle\right] \hat{u}(\xi)\right](x) / 2 \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)\right)
\end{aligned}
$$

for $x_{n+1} \in \mathbb{R} \backslash\{0\}$, and

$$
\begin{aligned}
& \text { supp } u:=\bigcap\left\{F ; F \text { is a closed subset of } \mathbb{R}^{n}\right. \text { and there is a real } \\
& \text { analytic function } U\left(x, x_{n+1}\right) \text { in } \mathbb{R}^{n+1} \backslash F \times\{0\} \\
&\text { such that } \left.U\left(x, x_{n+1}\right)=\mathcal{H}(u)\left(x, x_{n+1}\right) \text { for } x_{n+1} \neq 0\right\} .
\end{aligned}
$$

We note that supp u coincides with the support of u as a distribution if $u \in \mathcal{S}^{\prime}$ (see Lemma 1.2.2 of [6]). Let K be a compact subset of \mathbb{R}^{n}. Then $u \in \mathcal{A}^{\prime}(K)$ if and only if u is an analytic functional and supp $u \subset K$ (see Proposition 1.2.6 of [6]). It follows from Theorem 1.3.3 of [6] that there is $v \in \mathcal{A}^{\prime}(K)$ satisfying supp $(u-v) \cap K \subset \partial K$, and if $v=v_{1}, v_{2}$ are such functionals in $\mathcal{A}^{\prime}(K)$ we have $\operatorname{supp}\left(v_{1}-v_{2}\right) \subset \partial K$. Therefore, we can define the restriction map from \mathcal{F}_{0} to $\mathcal{A}^{\prime}(K) / \mathcal{A}^{\prime}(\partial K)(=\mathcal{B}(\stackrel{\circ}{K}))$ which is surjective. For $x^{0} \in \mathbb{R}^{n}$ we say that u is analytic at x^{0} if $\mathcal{H}(u)\left(x, x_{n+1}\right)$ can be continued analytically from $\mathbb{R}^{n} \times(0, \infty)$ to a neighborhood of $\left(x^{0}, 0\right)$ in \mathbb{R}^{n+1}. We define

$$
\text { sing supp } u:=\left\{x \in \mathbb{R}^{n} ; u \text { is not analytic at } x\right\} .
$$

Next let $u \in \mathcal{B}(X)$, where X is a bounded open subset of \mathbb{R}^{n}. Then there is $v \in \mathcal{A}^{\prime}(\bar{X})$ such that the residue class of v is u in $\mathcal{B}(X)$. We define

$$
\operatorname{supp} u:=\operatorname{supp} v \cap X, \quad \operatorname{sing} \operatorname{supp} u:=\operatorname{sing} \operatorname{supp} v \cap X .
$$

These definitions do not depend on the choice of v. So we say that u is analytic at x^{0} if $x^{0} \notin \operatorname{sing}$ supp u. Let X be an open subset of \mathbb{R}^{n}. We also define $\mathcal{B}(X)$ (see Definition 1.4.5 of [6]). For open subsets U and V of X with $V \subset U$ the restriction $\operatorname{map} \rho_{V}^{U}:\left.\mathcal{B}(U) \ni u \mapsto u\right|_{V} \in \mathcal{B}(V)$ can be defined so that ρ_{U}^{U} is the identity mapping and $\rho_{W}^{V} \circ \rho_{V}^{U}=\rho_{W}^{U}$ for open subsets U, V and W of X with $W \subset V \subset U$. By definition we can also define the restriction map from \mathcal{F}_{0} to $\mathcal{B}(X)$, and we denote by $\left.v\right|_{X}$ the restriction of $v \in \mathcal{F}_{0}$ to $\mathcal{B}(X)$ (or on X). We define the presheaf \mathcal{B}_{X} by associating $\mathcal{B}(U)$ to every open subset U of X. By definition \mathcal{B}_{X} is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.

Definition 1.1. (i) Let $u \in \mathcal{F}_{0}$. The analytic wave front set $W F_{A}(u) \subset T^{*} \mathbb{R}^{n} \backslash 0$ $\left(\simeq \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$ is defined as follows: $\left(x^{0}, \xi^{0}\right) \in T^{*} \mathbb{R}^{n} \backslash 0$ does not belong to $W F_{A}(u)$ if there are a conic neighborhood Γ of $\xi^{0}, R_{0}>0$ and $\left\{g^{R}(\xi)\right\}_{R \geq R_{0}} \subset$ $C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $g^{R}(\xi)=1$ in $\Gamma \cap\{\langle\xi\rangle \geq R\}$,

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} g^{R}(\xi)\right| \leq C_{|\tilde{\alpha}|}(C / R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|} \tag{1.1}
\end{equation*}
$$

if $\langle\xi\rangle \geq R|\alpha|$, and $g^{R}(D) u\left(=\mathcal{F}^{-1}\left[g^{R}(\xi) \hat{u}(\xi)\right]\right)$ is analytic at x^{0} for $R \geq R_{0}$, where C is a positive constant independent of R.
(ii) Let X be an open subset of \mathbb{R}^{n}, and let $u \in \mathcal{B}(X)$ and $\left(x^{0}, \xi^{0}\right) \in T^{*} X \backslash 0$ $\left(\simeq X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$. Then we say that $\left(x^{0}, \xi^{0}\right) \notin W F_{A}(u)\left(\subset T^{*} X \backslash 0\right)$ if there are a bounded open neighborhood U of x^{0} and $v \in \mathcal{A}^{\prime}(\bar{U})$ such that $\left.v\right|_{U}=\left.u\right|_{U}$ in $\mathcal{B}(U)$ and $\left(x^{0}, \xi^{0}\right) \notin W F_{A}(v)$

Remark. (i) $W F_{A}(u)$ for $u \in \mathcal{B}(X)$ is well-defined. Indeed, it follows from Theorem 2.6.5 in [6] that for any $v \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ with $x^{0} \notin \operatorname{supp} v$ there is $R_{1}>0$ such that $g^{R}(D) v$ is analytic at x^{0} if $R \geq R_{1}$, where $\left\{g^{R}(\xi)\right\}_{R \geq R_{0}}$ is a family of symbols satisfying (1.1).
(ii) Several remarks on this definition are given in Proposition 3.1.2 of [6].
(iii) From Theorem 3.1.6 in [6] and the results in [4] it follows that our definition of $W F_{A}(u)$ coincides with the usual definition.

Let \mathcal{U} be an open subset of the cosphere bundle $S^{*} \mathbb{R}^{n}$ over \mathbb{R}^{n}, which is identified with $\mathbb{R}^{n} \times S^{n-1}$. We define

$$
\mathcal{C}(\mathcal{U}):=\mathcal{B}\left(\mathbb{R}^{n}\right) /\left\{u \in \mathcal{B}\left(\mathbb{R}^{n}\right) ; W F_{A}(u) \cap \mathcal{U}=\emptyset\right\} .
$$

Since \mathcal{B} is a flabby sheaf, we have

$$
\mathcal{C}(\mathcal{U})=\mathcal{B}(U) /\left\{u \in \mathcal{B}(U) ; W F_{A}(u) \cap \mathcal{U}=\emptyset\right\}
$$

if U is an open subset of \mathbb{R}^{n} and $\mathcal{U} \subset U \times S^{n-1}$. Elements of $\mathcal{C}(\mathcal{U})$ are called microfunctions on \mathcal{U}. We can define the restriction $\left.\operatorname{map} \mathcal{C}(\mathcal{U}) \ni u \mapsto u\right|_{\mathcal{V}} \in \mathcal{C}(\mathcal{V})$ for open subsets \mathcal{U} and \mathcal{V} of $\mathbb{R}^{n} \times S^{n-1}$ with $\mathcal{V} \subset \mathcal{U}$. Let Ω be an open subset of $\mathbb{R}^{n} \times S^{n-1}$. We define the presheaf \mathcal{C}_{Ω} on Ω associating $\mathcal{C}(\mathcal{U})$ to every open subset \mathcal{U} of Ω. Then \mathcal{C}_{Ω} is a flabby sheaf (see, e.g., Theorem 3.6.1 of [6]). For each open subset U of \mathbb{R}^{n} we define the mapping sp: $\mathcal{B}(U) \rightarrow \mathcal{C}\left(U \times S^{n-1}\right)$ such that the residue class in $\mathcal{C}\left(U \times S^{n-1}\right)$ of $u \in \mathcal{B}(U)$ is equal to $\operatorname{sp}(u)$. We also write $\left.u\right|_{\mathcal{U}}=\left.\operatorname{sp}(u)\right|_{\mathcal{U}}$ for $u \in \mathcal{B}(U)$ and $\left.v\right|_{\mathcal{U}}=\left.\operatorname{sp}\left(\left.v\right|_{U}\right)\right|_{\mathcal{U}}$ for $v \in \mathcal{F}_{0}$, where \mathcal{U} is an open subset of $U \times S^{n-1}$.

Assume that $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and there are positive constants C_{k} ($k \geq 0$) such that

$$
\begin{align*}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)\right| \tag{1.2}\\
& \leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|}(A / R)^{|\beta|}\langle\xi\rangle^{m_{1}+|\beta|}\langle\eta\rangle^{m_{2}} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{align*}
$$

if $\alpha, \beta, \tilde{\beta}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}, \xi, y, \eta \in \mathbb{R}^{n}$ and $\langle\xi\rangle \geq R|\beta|$, where $D_{y}=-i \partial_{y}, R \geq 1, A \geq 0$, $m_{1}, m_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. It should be remarked that some functions satisfying the estimates (1.2) with $m_{1}=m_{2}=0$ and $\delta_{1}=\delta_{2}=0$ are given in Proposition 2.2.3 of [6]. We define pseudodifferential operators $a\left(D_{x}, y, D_{y}\right)$ and ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ by

$$
a\left(D_{x}, y, D_{y}\right) u(x)=(2 \pi)^{-n} \mathcal{F}_{\xi}^{-1}\left[\int\left(\int e^{-i y \cdot(\xi-\eta)} a(\xi, y, \eta) \hat{u}(\eta) d \eta\right) d y\right](x)
$$

and ${ }^{r} a\left(D_{x}, y, D_{y}\right) u=b\left(D_{x}, y, D_{y}\right) u$ for $u \in \mathcal{S}_{\infty}$, respectively, where $b(\xi, y, \eta)=$ $a(\eta, y, \xi)$. Applying the same argument as in the proof of Theorem 2.3.3 of [6] we have the following

Proposition 1.2. $a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathcal{S}_{\varepsilon_{2}}$ to $\mathcal{S}_{\varepsilon_{1}}$ and from $\mathcal{S}_{-\varepsilon_{2}}^{\prime}$ to $\mathcal{S}_{-\varepsilon_{1}}^{\prime}$, respectively, if

$$
\left\{\begin{array}{l}
\nu>1, \quad \varepsilon_{2}-\delta_{2}=\nu\left(\varepsilon_{1}+\delta_{1}\right)_{+} \tag{1.3}\\
\varepsilon_{1}+\delta_{1} \leq 1 / R, \quad R \geq e \sqrt{n} \nu A /(\nu-1)
\end{array}\right.
$$

where $c_{+}=\max \{c, 0\}$. Similarly, ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathcal{S}_{-\varepsilon_{1}}$ to $\mathcal{S}_{-\varepsilon_{2}}$ and from $\mathcal{S}_{\varepsilon_{1}}^{\prime}$ to $\mathcal{S}_{\varepsilon_{2}}^{\prime}$, respectively, if (1.3) is valid.

Remark. (i) We had a slight improvement of the remark of Theorem 2.3.3 of [6], i.e., we can take $R_{1}(S, T, \nu)=e \sqrt{n} \nu /(\nu-1)$ there instead of $R_{1}(S, T, \nu)=$ en $\nu /(\nu-1)$ if $n=n^{\prime}=n^{\prime \prime}, S(y, \xi)=-y \cdot \xi$ and $T(y, \eta)=y \cdot \eta$. This is reflected in the condition (1.3).
(ii) Since for any open sets $X_{j}(j=1,2)$ with $X_{1} \Subset X_{2}$ one can construct a symbol $a(\xi, y, \eta)$ satisfying (1.2) with $m_{1}=m_{2}=0$ and $\delta_{1}=\delta_{2}=0$, supp $a \subset$ $\mathbb{R}^{n} \times X_{2} \times \mathbb{R}^{n}$ and $a(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times X_{1} \times \mathbb{R}^{n}$, one can use the operator $a\left(D_{x}, y, D_{y}\right)$ instead of cut-off functions.

Definition 1.3. Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and let X be an open subset of \mathbb{R}^{n}. Moreover, let $R_{0} \geq 0$.
(i) Let $R_{0} \geq 1, m, \delta \in \mathbb{R}$ and $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(x, \xi) \in S^{m, \delta}\left(R_{0}, A, B\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta+\tilde{\beta})}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|}\left(A / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{|\beta|}\langle\xi\rangle^{m+|\beta|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in\left(\mathbb{Z}_{+}\right)^{n}$ and $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R_{0}(|\alpha|+|\beta|)$, where $a_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)$ and the C_{k} are independent of α and β. We also write $S^{m}\left(R_{0}, A, B\right)=S^{m, 0}\left(R_{0}, A, B\right)$ and $S^{m}\left(R_{0}, A\right)=S^{m}\left(R_{0}, A, A\right)$. We define $S^{+}\left(R_{0}\right.$, $A, B):=\bigcap_{\delta>0} S^{0, \delta}\left(R_{0}, A, B\right)$.
(ii) Let $R_{0} \geq 1, m_{j}, \delta_{j} \in \mathbb{R}(j=1,2), A_{j} \geq 0(j=1,2)$ and $B \geq 0$, and let $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(\xi, y, \eta) \in S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A_{1}, B, A_{2}\right)$ if $a(\xi, y, \eta)$ satisfies

$$
\begin{gathered}
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta^{1}+\beta^{2}+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|+|\tilde{\gamma}|}\left(A_{1} / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{\left|\beta^{1}\right|+\left|\beta^{2}\right|} \\
\quad \times\left(A_{2} / R_{0}\right)^{|\gamma|}\langle\xi\rangle^{m_{1}+\left|\beta^{1}\right|-|\tilde{\alpha}|}\langle\eta\rangle^{m_{2}+\left|\beta^{2}\right|-|\tilde{\gamma}|} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{gathered}
$$

for any $\alpha, \tilde{\alpha}, \beta^{1}, \beta^{2}, \tilde{\beta}, \gamma, \tilde{\gamma} \in\left(\mathbb{Z}_{+}\right)^{n},(\xi, y, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R_{0}\left(|\alpha|+\left|\beta^{1}\right|\right)$ and $\langle\eta\rangle \geq R_{0}\left(|\gamma|+\left|\beta^{2}\right|\right)$. We also write $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A\right)=S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A, A, A\right)$. Similarly, we define $S^{+}\left(R_{0}, A_{1}, B, A_{2}\right)=\bigcap_{\delta>0} S^{0,0, \delta, \delta}\left(R_{0}, A_{1}, B, A_{2}\right)$.
(iii) Let $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}(\Gamma)$. We say that $a(x, \xi) \in P S^{+}\left(\Gamma ; R_{0}, A\right.$, B) if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta)}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|, \delta} A^{|\alpha|} B^{|\beta|}|\alpha|!|\beta|!\langle\xi\rangle^{-|\alpha|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in \Gamma$ with $|\xi| \geq 1$ and $\langle\xi\rangle \geq R_{0}|\alpha|$ and $\delta>0$. We also write $P S^{+}\left(\Gamma ; R_{0}, A\right)=P S^{+}\left(\Gamma ; R_{0}, A, A\right)$. Moreover, we say that $a(x, \xi) \in$ $P S^{+}\left(X ; R_{0}, A, B\right)$ if $a(x, \xi) \in C^{\infty}\left(X \times \mathbb{R}^{n}\right)$ and $a(x, \xi) \in P S^{+}\left(X \times\left(\mathbb{R}^{n} \backslash\{0\}\right) ; R_{0}, A\right.$, $B)$.
(iv) Let $m, \delta \in \mathbb{R}$ and $A, C_{0} \geq 0$, and let $\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in \prod_{j \in \mathbb{Z}_{+}} C^{\infty}(\Gamma)$. We say that $a(x, \xi) \equiv\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in F S^{m, \delta}\left(\Gamma ; C_{0}, A\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{j(\beta)}^{(\alpha)}(x, \xi)\right| \leq C C_{0}^{j} A^{|\alpha|+|\beta|} j!|\alpha|!|\beta|!\left\langle\langle \rangle^{m-j-|\alpha|} e^{\delta\langle\xi\rangle}\right.
$$

for any $j \in \mathbb{Z}_{+}, \alpha, \beta \in\left(\mathbb{Z}_{+}\right)^{n}$ and $(x, \xi) \in \Gamma$ with $|\xi| \geq 1$, where C is independent of α, β and j. We define $F S^{+}\left(\Gamma ; C_{0}, A\right):=\bigcap_{\delta>0} F S^{0, \delta}\left(\Gamma ; C_{0}, A\right)$. We also write $a(x, \xi)=\sum_{j=0}^{\infty} a_{j}(x, \xi)$ formally. Moreover, we write $F S^{+}\left(X ; C_{0}, A\right)=F S^{+}(X \times$ $\left.\left(\mathbb{R}^{n} \backslash\{0\}\right) ; C_{0}, A\right)$.
(v) For $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$ we define the symbol $\left({ }^{t} a\right)(x, \xi)$ by

$$
\left({ }^{t} a\right)(x, \xi)=\sum_{j=0}^{\infty} b_{j}(x, \xi), \quad b_{j}(x, \xi)=\sum_{k+|\alpha|=j}(-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi) / \alpha!.
$$

Remark. It is easy to see that $\left({ }^{t} a\right)(x, \xi) \in F S^{+}\left(\check{\Gamma} ; \max \left\{C_{0}, 4 n A^{2}\right\}, 2 A\right)$. Moreover, we have $\left({ }^{t}\left({ }^{t} a\right)\right)(x, \xi)=a(x, \xi)$.

Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and assume that $a(x, \xi) \in$ $P S^{+}\left(\Gamma ; R_{0}, A\right)$, where $A \geq 0$ and $R_{0} \geq 1$. Let $\Gamma_{j}(0 \leq j \leq 2)$ be open conic subsets of Γ such that $\Gamma_{0} \Subset \Gamma_{1} \Subset \Gamma_{2} \Subset \Gamma$, and write $\Gamma^{0}=\Gamma \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$, where $\Gamma_{2} \Subset \Gamma$ implies that $\Gamma_{2}^{0} \Subset \Gamma$. It follows from Proposition 2.2.3 of [6] that there are symbols $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Gamma_{1}, \Gamma_{2}\right)\right)(R \geq 4)$ satisfying $0 \leq \Phi^{R}(\xi, y, \eta) \leq 1, \operatorname{supp} \Phi^{R} \subset \mathbb{R}^{n} \times \Gamma_{2}$ and $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Gamma_{1}$ with $\langle\eta\rangle \geq R$. Put $a^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta) a(y, \eta)$. Then we have $a^{R}(\xi, y, \eta) \in$ $S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), A+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)$ for $R \geq \max \left\{4, R_{0}\right\}$. Let $u \in \mathcal{C}\left(\Gamma_{0}^{0}\right)$, and choose $v \in \mathcal{F}_{0}$ so that $\left.v\right|_{\Gamma_{0}^{0}}=u$. Applying Proposition 1.2 with $a(\xi, y, \eta)=a^{R}(\eta, y, \xi)$ and noting that $a^{R}\left(D_{x}, y, D_{y}\right)={ }^{r} a\left(D_{x}, y, D_{y}\right)$, we can see that $a^{R}\left(D_{x}, y, D_{y}\right) v$ is well-defined and belongs to \mathcal{F}_{0} if $R \geq \max \left\{4, R_{0}, 2 e \sqrt{n}\left(2 A+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)\right\}$. Moreover, $a^{R}\left(D_{x}, y, D_{y}\right) v$ determines an element $\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{U} \in \mathcal{B}(U)$ and, therefore, an element $\left.\operatorname{sp}\left(\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{U}\right)\right|_{\Gamma_{0}^{0}}\left(\left.\equiv\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}\right) \in \mathcal{C}\left(\Gamma_{0}^{0}\right)$, where U is a bounded open subset of \mathbb{R}^{n} satisfying $\Gamma_{0}^{0} \subset U \times S^{n-1}$. It follows from Lemma 2.1 of [7] that $\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}$ does not depend on the choice of $\Phi^{R}(\xi, y, \eta)$ if $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}(R, B)$ and $R \geq R\left(A, B, \Gamma_{0}, \Gamma_{1}\right)$, where $R\left(A, B, \Gamma_{0}, \Gamma_{1}\right)>0$. From Lemma 2.2 of [7] it follows that for each conic subset Ω of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with $\Omega \Subset \Gamma_{0}$ there is $R\left(A, \Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right)>0$ such that $W F_{A}\left(a^{R}\left(D_{x}, y, D_{y}\right) w\right) \cap \Omega=\emptyset$ if $R \geq R\left(A, \Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right), w \in \mathcal{F}_{0}$ and $W F_{A}(w) \cap \Gamma_{0}=\emptyset$. Therefore, we can define the operator $a(x, D): \mathcal{C}\left(\Gamma_{0}^{0}\right) \rightarrow \mathcal{C}\left(\Gamma_{0}^{0}\right)$ by $a(x, D) u=\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}$ for $R \gg 1$, and the operator $a(x, D): \mathcal{C}\left(\Gamma^{0}\right) \rightarrow \mathcal{C}\left(\Gamma^{0}\right)$. Moreover, it follows from Lemma 2.2 of [7] that

$$
a(x, D)\left(\left.w\right|_{\mathcal{U}}\right)=\left.(a(x, D) w)\right|_{\mathcal{U}} \quad \text { for } w \in \mathcal{C}(\mathcal{V})
$$

where \mathcal{U} and \mathcal{V} are open subsets of $\mathbb{R}^{n} \times S^{n-1}$ satisfying $\mathcal{U} \subset \mathcal{V} \subset \Gamma^{0}$. So we can define $a(x, D): \mathcal{C}_{\Gamma^{0}} \rightarrow \mathcal{C}_{\Gamma^{0}}$, which is a sheaf homomorphism. Let X be an open subset of \mathbb{R}^{n}, and assume that $a(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$. Similarly, taking $\Gamma=X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, we can define the operator $a(x, D): \mathcal{B}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$ and the operator $a(x, D)$: $\mathcal{B}(U) / \mathcal{A}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$, where U is a bounded open subset of X and $\mathcal{A}(U)$ denotes the space of all real analytic functions defined in U (see, also, $\S 2.7$ of [6]). In doing so, we may choose $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C_{*}\right)$ so that supp $\Phi^{R} \subset \mathbb{R}^{n} \times X_{2} \times \mathbb{R}^{n}$ and $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times X_{1} \times \mathbb{R}^{n}$, where $\Gamma_{j}=X_{j} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Moreover, we can define the operator $a(x, D): \mathcal{B}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$ and the operator $a(x, D): \mathcal{B}_{X} / \mathcal{A}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$, which are sheaf homomorphisms.

Here \mathcal{A}_{X} denotes the sheaf (of germs) of real analytic functions on X.
Assume that $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$. Choose $\left\{\phi_{j}^{R}(\xi)\right\}_{j \in \mathbb{Z}_{+}} \subset$ $C^{\infty}\left(\mathbb{R}^{n}\right)$ so that $0 \leq \phi_{j}^{R}(\xi) \leq 1$,

$$
\begin{aligned}
& \phi_{j}^{R}(\xi)= \begin{cases}0 & \text { if }\langle\xi\rangle \leq 2 R j, \\
1 & \text { if }\langle\xi\rangle \geq 3 R j,\end{cases} \\
& \left|\partial_{\xi}^{\alpha+\beta} \phi_{j}^{R}(\xi)\right| \leq \widehat{C}_{|\beta|}(\widehat{C} / R)^{|\alpha|}\langle\xi\rangle^{-|\beta|} \quad \text { if }|\alpha| \leq 2 j
\end{aligned}
$$

where the $\widehat{C}_{|\beta|}$ and \widehat{C} do not depend on j and R (see $\S 2.2$ of [6]). Then it follows from Lemma 2.2.4 of [6] that

$$
\tilde{a}(x, \xi):=\sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\xi) a_{j}(x, \xi) \in P S^{+}(\Gamma ; R, 2 A+3 \widehat{C}, A)
$$

if $R>C_{0}$. So we can define $a(x, D) u \in \mathcal{C}\left(\Gamma^{0}\right)$ by $a(x, D) u=\tilde{a}(x, D) u$. Indeed, applying the same argument as in $\S 3.7$ of $[6]$ we can see that $a(x, D) u \in \mathcal{C}\left(\Gamma^{0}\right)$ does not depend on the choice of $\left\{\phi_{j}^{R}(\xi)\right\}$. Similarly, $a(x, D)$ defines a sheaf homomorphism $a(x, D): \mathcal{C}_{\Gamma^{0}} \rightarrow \mathcal{C}_{\Gamma^{0}}$. If $\Gamma=X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, then we can also define the operator $a(x, D): \mathcal{B}(U) / \mathcal{A}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$ and the operator $a(x, D): \mathcal{B}_{X} / \mathcal{A}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$, where U is an open subset satisfying $U \Subset X$.

Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and let $p(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$, where $A, C_{0} \geq 0$.

Theorem 1.4. Let \mathcal{U} and \mathcal{V} be bounded open subsets of Γ^{0} in $\mathbb{R}^{n} \times S^{n-1}$ such that $\mathcal{V} \Subset \mathcal{U} \Subset \Gamma^{0}$. Assume that $W F_{A}(f) \cap \mathcal{U}=\emptyset$ if $f \in L^{2}\left(\mathbb{R}^{n}\right)$, $W F_{A}(f) \cap \partial \mathcal{U}=\emptyset$ and $p(x, D)\left(\left.f\right|_{\mathcal{U}}\right)=0$ in $\mathcal{C}(\mathcal{U})$. Then $\left({ }^{t} p\right)(x, D)$ maps $\mathcal{C}(\check{\mathcal{V}})$ onto $\mathcal{C}(\check{\mathcal{V}})$, i.e., for any $f \in \mathcal{C}(\check{\mathcal{V}})$ there is $u \in \mathcal{C}(\check{\mathcal{V}})$ satisfying $\left({ }^{t} p\right)(x, D) u=f$ in $\mathcal{C}(\check{\mathcal{V}})$.

Corollary 1.5 ([7]). Let $z^{0}=\left(x^{0}, \xi^{0}\right) \in \Gamma$, and assume that $p(x, D)$ is analytic microhypoelliptic at z^{0}, i.e., there is an open neighborhood \mathcal{U} of $\left(x^{0}, \xi^{0} /\left|\xi^{0}\right|\right)$ in Γ^{0} such that the sheaf homomorphism $p(x, D): \mathcal{C}_{\mathcal{U}} \rightarrow \mathcal{C}_{\mathcal{U}}$ is injective. Then $\left({ }^{t} p\right)(x, D)$ is microlocally solvable at $\left(x^{0},-\xi^{0}\right)$, i.e., there is an open neighborhood \mathcal{U} of $\left(x^{0}, \xi^{0} /\left|\xi^{0}\right|\right)$ in Γ^{0} such that $\left({ }^{t} p\right)(x, D): \mathcal{C}(\mathcal{U}) \rightarrow \mathcal{C}(\mathcal{U})$ is surjective.

Corollary 1.6. Assume that $p(x, \xi) \equiv \sum_{j=0}^{\infty} p_{j}(x, \xi) \in F S^{m, 0}\left(\Gamma ; C_{0}, A\right)$, and that $p_{0}(x, \xi)$ is positively homogeneous of degree m in ξ. Let \mathcal{U} and \mathcal{V} be bounded open subsets of Γ^{0} satisfying $\mathcal{V} \Subset \mathcal{U}$, and assume that there is a continuous vector field $\vartheta: \mathcal{U} \ni z \mapsto \vartheta(z) \in \mathbb{R}^{2 n}$ such that $p_{0}(x, \xi)$ is microhyperbolic with respect to $\vartheta(z)$
at each $z \in \mathcal{U}$. Moreover, we assume that for any $z^{0} \in \mathcal{U}$ there is no generalized semi-bicharacteristics $\{z(s)\}_{s \in(-\infty, 0]}$ of p_{0} starting from z^{0} in the negative direction such that $(x(s), \xi(s) /|\xi(s)|) \in \mathcal{U}$ for $s \in(-\infty, 0]$, where the parameter s of the curve is chosen so that $-s$ coincides with the arc length from z^{0} to $z(s)$ and $z(s)=$ $(x(s), \xi(s))$. For terminology we refer to $\S 4.3$ of [6]. Then $\left({ }^{t} p\right)(x, D): \mathcal{C}(\check{\mathcal{V}}) \rightarrow \mathcal{C}(\check{\mathcal{V}})$ is surjective.

Corollary 1.7. Let $z^{0}=\left(x^{0}, \xi^{0}\right) \in \Gamma$, and assume that $p(x, \xi) \equiv \sum_{j=0}^{\infty} p_{j}(x, \xi) \in$ $F S^{m, 0}\left(\Gamma ; C_{0}, A\right)$, and that $p_{0}(x, \xi)$ is positively homogeneous of degree m in ξ and microhyperbolic with respect to $\left(0, e_{1}\right) \in \mathbb{R}^{2 n}$ at z^{0}, where $e_{1}=(1,0, \cdots, 0) \in \mathbb{R}^{n}$. Then $\left({ }^{t} p\right)(x, D)$ is microlocally solvable at $\left(x^{0},-\xi^{0}\right)$.

Remark. The above corollary was proved in Theorem 5.4.1 of [6] in a different way.

Theorem 1.4 can be proved in the same way as in [7]. We shall give the outline of the proof in the next section. Then Corollary 1.5 easily follows from Theorem 1.4. Combining Theorem 4.3.8 of [6] and Theorem 1.4 one can easily prove Corollary 1.6. Corollary 1.7 is an immediate consequence of Corollary 1.6.

2. Proof of Theorem 1.4

Let $\Gamma_{j}(j=1,2)$ be open conic subsets of Γ such that $\mathcal{V} \Subset \mathcal{U} \Subset \Gamma_{1}^{0} \Subset \Gamma_{2}^{0} \Subset \Gamma^{0}$, where $\Gamma_{j}^{0}=\Gamma_{j} \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$. Choose $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Gamma_{1}\right.\right.$, $\left.\left.\Gamma_{2}\right)\right)(R \geq 4)$ so that $0 \leq \Phi^{R}(\xi, y, \eta) \leq 1$, supp $\Phi^{R} \subset \mathbb{R}^{n} \times \Gamma_{2}$ and $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Gamma_{1}$ with $\langle\eta\rangle \geq R$. We put

$$
p^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta) \sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\eta) p_{j}(y, \eta)
$$

where $R>\max \left\{4, C_{0}\right\}$. Then we have

$$
p^{R}(\xi, y, \eta) \in S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), 2 A+3 \widehat{C}+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)
$$

By definition there is $R\left(A, \mathcal{U}, \Gamma_{1}, \Gamma_{2}\right)>\max \left\{4, C_{0}\right\}$ such that

$$
\begin{equation*}
\left.\left(p^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\mathcal{U}}=p(x, D)\left(\left.v\right|_{\mathcal{U}}\right) \quad \text { in } \mathcal{C}(\mathcal{U}) \tag{2.1}
\end{equation*}
$$

if $R \geq R\left(A, \mathcal{U}, \Gamma_{1}, \Gamma_{2}\right)$ and $v \in \mathcal{F}_{0}$. Let $\Omega_{j}(j=1,2)$ be open conic subset satisfying $\mathcal{V} \Subset \Omega_{2}^{0} \Subset \Omega_{1}^{0} \Subset \mathcal{U}$, and let $\Psi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Omega_{2}, \Omega_{1}\right), C\left(\Omega_{2}, \Omega_{1}\right)\right)(R \geq$
4) satisfy supp $\Psi^{R} \subset \mathbb{R}^{n} \times \Omega_{1}$ and $\Psi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Omega_{2}$ with $\langle\eta\rangle \geq R$. We assume that $R \geq \max \left\{R\left(A, \mathcal{U}, \Gamma_{1}, \Gamma_{2}\right), 25 e \sqrt{n} \max \left\{2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Omega_{2}, \Omega_{1}\right)\right\}\right\}$. For $\varepsilon, \nu \in \mathbb{R}$ we define

$$
L_{\varepsilon, \nu}^{2}:=\left\{f \in \mathcal{S}_{-\varepsilon}^{\prime} ;\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} f(x) \in L^{2}\left(\mathbb{R}^{n}\right)\right\} .
$$

$L_{\varepsilon, \nu}^{2}$ is a Hilbert space in which the scalar product is given by

$$
(f, g)_{L_{\varepsilon, \nu}^{2}}:=\left(\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} f,\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} g\right)_{L^{2}},
$$

where $(\cdot, \cdot)_{L^{2}}$ denotes the scalar product of $L^{2}\left(\mathbb{R}^{n}\right)$. We denote by \mathcal{X} the inductive limit $\xrightarrow{\lim } L_{1 / j, 1 / j}^{2}$ of the sequence $\left\{L_{1 / j, 1 / j}^{2}\right\}$ (as a locally convex space). Define an operator $T: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{X} \times \mathcal{X}$ as follows;
(i) the domain $D(T)$ of T is given by

$$
D(T)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right) ;\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f \in \mathcal{X} \text { and } p^{R}\left(D_{x}, y, D_{y}\right) f \in \mathcal{X}\right\}
$$

(ii) $T f=\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f, p^{R}\left(D_{x}, y, D_{y}\right) f\right) \quad$ for $f \in D(T)$.

Let $f \in D(T)$. Then (2.1) gives $p(x, D)\left(\left.f\right|_{\mathcal{U}}\right)=0$ in $\mathcal{C}(\mathcal{U})$. Moreover, it follows from Lemma 2.1 of [7] that there is $R\left(\Omega_{1}, \Omega_{2}, \mathcal{U}\right)>0$ such that $W F_{A}(f) \cap \partial \mathcal{U}=$ \emptyset if $R \geq R\left(\Omega_{1}, \Omega_{2}, \mathcal{U}\right)$. Therefore, by the assumption of Theorem 1.4 we have $W F_{A}(f) \cap \mathcal{U}=\emptyset$. From Lemma 2.9 of [7] there are $R_{1}\left(\Omega_{1}, \Omega_{2}, \mathcal{U}\right)>0$ and $\delta\left(f, \Omega_{1}, \mathcal{U}\right)>0$ such that $\Psi^{R}\left(D_{x}, y, D_{y}\right) f \in L_{\delta, \nu}^{2}$ if $R \geq R_{1}\left(\Omega_{1}, \Omega_{2}, \mathcal{U}\right), \nu \in \mathbb{R}$ and $\delta<\min \left\{1 /(2 R), \delta\left(f, \Omega_{1}, \mathcal{U}\right)\right\}$. This implies that $f \in \mathcal{X}$, i.e., $D(T)=\mathcal{X}$. We can easily prove that T is a closed operator (see $\S 3$ of $[7]$).

Repeating the same argument as in $\S 3$ of [7], we can show that for any $f \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ there is $u \in \mathcal{F}_{0}$ satisfying

$$
\left({ }^{t} p\right)(x, D)\left(\left.u\right|_{\check{\mathcal{V}}}\right)=\left.f\right|_{\check{\mathcal{V}}} \quad \text { in } \mathcal{C}(\check{\mathcal{V}}),
$$

which proves Theorem 1.4.

References

[1] A. A. Albanese, A. Corli and L. Rodino, Hypoellipticity and local solvability in Gevrey classes, Math. Nachr. 242 (2002), 5-16.
[2] P. D. Cordaro and J.-M. Trépreau, On the solvability of linear partial differential equations in spaces of hyperfunctions, Ark. Mat. 36 (1998), 41-71.
[3] L. Hörmander, On the existence and the regularity of solutions of linear pseudodifferential equations, Enseign. Math. 17 (1971), 99-163.
[4] L. Hörmander, The Analysis of Linear Partial Differential Operators I, SpringerVerlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[5] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
[6] S. Wakabayashi, Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Math. vol. 1737, Springer, 2000.
[7] S. Wakabayashi, Remarks on analytic hypoellipticity and local solvability in the space of hyperfunctions, J. Math. Sci. Univ. Tokyo 10 (2003), 89-117.
[8] A. Yoshikawa, On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 14 (1967), 81-88.

