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1. Introduction

Let P be a linear partial differential operator on Rn with C∞ coefficients, and let

x0 ∈ Rn. In Treves [5] and Yoshikawa [8] it was proved that if P is hypoelliptic at x0,

then there is a neighborhood U of x0 satisfying the following; for every f ∈ C∞(U)

there is u ∈ D′(U) such that tPu = f in U . Here tP denotes the transposed operator

of P . Hörmander [3] generalized their results ( see Theorem 1.2.4 of [3]). Recently

Albanese, Corli and Rodino proved in [1] that the result of Treves and Yoshikawa

is still valid in the framework of the Gevrey classes and the spaces of ultradistribu-

tions. Moreover, Cordaro and Trépreau proved in [2] that Hörmander’s result can

be generalized in the space of hyperfunctions for partial differential operators with

analytic coefficients. In particular, they proved that P is locally solvable at x0 in

the space of hyperfunctions if the coefficients of P are analytic and P is analytic

hypoelliptic at x0. The aim of this article is to microlocalize their results for a pseu-

dodifferential operator p(x,D), i.e., if U is a bounded open subset of the cosphere

bundle S∗Rn ( ≃ Rn × Sn−1) over Rn and if p(x,D) satisfies

f ∈ L2(Rn), WFA(f) ∩ ∂U = ∅, WFA(p(x,D)f) ∩ U = ∅
=⇒

WFA(f) ∩ U = ∅,

then the transposed operator tp(x,D): C(Ǔ) → C(Ǔ) is surjective, where Ǔ = {(x, ξ);

(x,−ξ) ∈ U} and C(U) denotes the space of microfunctions on U .

We shall explain briefly about hyperfunctions, microfunctions and pseudodiffer-

ential operators acting on them. For the details we refer to [6]. Let ε ∈ R, and



denote ⟨ξ⟩ = (1+ |ξ|2)1/2, where ξ = (ξ1, · · · , ξn) ∈ Rn and |ξ| = (
∑n

j=1 |ξj|2)1/2. We

define

Ŝε := {v(ξ) ∈ C∞(Rn); eε⟨ξ⟩v(ξ) ∈ S},

where S ( ≡ S(Rn)) denotes the Schwartz space. We introduce the topology to Ŝε

in a natural way. Then the dual space Ŝ ′
ε of Ŝε can be identified with {v(ξ) ∈ D′;

e−ε⟨ξ⟩v(ξ) ∈ S ′}, since D ( = C∞
0 (Rn)) is dense in Ŝε. If ε ≥ 0, then Ŝε is a dense

subset of S and we can define Sε := F−1[Ŝε] ( = F [Ŝε]) ( ⊂ S), where F and

F−1 denote the Fourier transformation and the inverse Fourier transformation on

S ( or S ′), respectively. For example, F [u](ξ) =
∫

e−ix·ξu(x) dx for u ∈ S, where

x · ξ =
∑n

j=1 xjξj for x = (x1, · · · , xn) ∈ Rn and ξ = (ξ1, · · · , ξn) ∈ Rn. Let ε ≥ 0.

We introduce the topology in Sε so that F : Ŝε → Sε is homeomorphic. Denote by S ′
ε

the dual space of Sε. Since Sε is dense in S, we can regard S ′ as a subspace of S ′
ε. We

can define the transposed operators tF and tF−1 of F and F−1, which map S ′
ε and Ŝ ′

ε

onto Ŝ ′
ε and S ′

ε, respectively. Since Ŝ−ε ⊂ Ŝ ′
ε ( ⊂ D′), we can define S−ε = tF−1[Ŝ−ε],

and introduce the topology in S−ε so that tF−1 : Ŝ−ε → S−ε is homeomorphic. S ′
−ε

denotes the dual space of S−ε. We note that S ′
−ε = F [Ŝ ′

−ε] ⊂ S ′ ⊂ S ′
ε and F = tF

on S ′. So we also represent tF by F . Let A(Cn) be the space of entire analytic

functions on Cn, and let K be a compact subset of Cn. We denote by A′(K) the

space of analytic functionals carried by K, i.e., u ∈ A′(K) if and only if (i) u :

A(Cn) ∋ φ 7→ u(φ) ∈ C is a linear functional, and (ii) for any neighborhood ω of

K in Cn there is Cω ≥ 0 such that |u(φ)| ≤ Cω supz∈ω |φ(z)| for φ ∈ A(Cn). Define

A′(Rn) :=
∪

KbRn A′(K), S∞ :=
∩

ε∈R Sε, E0 :=
∩

ε>0 S−ε and F0 :=
∩

ε>0 S ′
ε. Here

A b B means that the closure A of A is compact and included in the interior
◦
B of

B. We note that F−1[C∞
0 (Rn)] ⊂ S∞ and that S∞ is dense in Sε and S ′

ε for ε ∈ R.

For u ∈ A′(Rn) we can define the Fourier transform û(ξ) of u by

û(ξ) ( = F [u](ξ)) = uz(e
−iz·ξ),

where z · ξ =
∑n

j=1 zjξj for z = (z1, · · · , zn) ∈ Cn and ξ = (ξ1, · · · , ξn) ∈ Rn. By

definition we have û(ξ) ∈
∩

ε>0 Ŝ−ε ( = F [E0]). Therefore, we can regard A′(Rn)

as a subspace of E0, i.e., A′(Rn) ⊂ E0 ⊂ F0, ( see Lemma 1.1.2 of [6]). The space

F0 plays an important role in our treatment as the space S ′ does in the framework

of C∞ and distributions. For a bounded open subset X of Rn we define the space

B(X) of hyperfunctions in X by

B(X) := A′(X)/A′(∂X),
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where ∂X denotes the boundary of X.

Let u ∈ F0. We define

H(u)(x, xn+1) := (sgn xn+1) exp[−|xn+1|⟨D⟩]u(x)/2

( = (sgn xn+1)F−1
ξ [exp[−|xn+1|⟨ξ⟩]û(ξ)](x)/2 ∈ S ′(Rn))

for xn+1 ∈ R \ {0}, and

supp u :=
∩

{F ; F is a closed subset of Rn and there is a real

analytic function U(x, xn+1) in Rn+1 \ F × {0}
such that U(x, xn+1) = H(u)(x, xn+1) for xn+1 ̸= 0}.

We note that supp u coincides with the support of u as a distribution if u ∈ S ′ ( see

Lemma 1.2.2 of [6]). Let K be a compact subset of Rn. Then u ∈ A′(K) if and only if

u is an analytic functional and supp u ⊂ K ( see Proposition 1.2.6 of [6]). It follows

from Theorem 1.3.3 of [6] that there is v ∈ A′(K) satisfying supp (u−v)∩K ⊂ ∂K,

and if v = v1, v2 are such functionals in A′(K) we have supp (v1 − v2) ⊂ ∂K.

Therefore, we can define the restriction map from F0 to A′(K)/A′(∂K) ( = B(
◦
K))

which is surjective. For x0 ∈ Rn we say that u is analytic at x0 if H(u)(x, xn+1) can

be continued analytically from Rn× (0,∞) to a neighborhood of (x0, 0) in Rn+1. We

define

sing supp u := {x ∈ Rn; u is not analytic at x}.

Next let u ∈ B(X), where X is a bounded open subset of Rn. Then there is

v ∈ A′(X) such that the residue class of v is u in B(X). We define

supp u := supp v ∩ X, sing supp u := sing supp v ∩ X.

These definitions do not depend on the choice of v. So we say that u is analytic at

x0 if x0 /∈ sing supp u. Let X be an open subset of Rn. We also define B(X) ( see

Definition 1.4.5 of [6]). For open subsets U and V of X with V ⊂ U the restriction

map ρU
V : B(U) ∋ u 7→ u|V ∈ B(V ) can be defined so that ρU

U is the identity mapping

and ρV
W ◦ ρU

V = ρU
W for open subsets U , V and W of X with W ⊂ V ⊂ U . By

definition we can also define the restriction map from F0 to B(X), and we denote

by v|X the restriction of v ∈ F0 to B(X) ( or on X). We define the presheaf BX by

associating B(U) to every open subset U of X. By definition BX is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.
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Definition 1.1. (i) Let u ∈ F0. The analytic wave front set WFA(u) ⊂ T ∗Rn \ 0

( ≃ Rn × (Rn \ {0})) is defined as follows: (x0, ξ0) ∈ T ∗Rn \ 0 does not belong

to WFA(u) if there are a conic neighborhood Γ of ξ0, R0 > 0 and {gR(ξ)}R≥R0 ⊂
C∞(Rn) such that gR(ξ) = 1 in Γ ∩ {⟨ξ⟩ ≥ R},

(1.1) |∂α+α̃
ξ gR(ξ)| ≤ C|α̃|(C/R)|α|⟨ξ⟩−|α̃|

if ⟨ξ⟩ ≥ R|α|, and gR(D)u ( = F−1[gR(ξ)û(ξ)]) is analytic at x0 for R ≥ R0, where

C is a positive constant independent of R.

(ii) Let X be an open subset of Rn, and let u ∈ B(X) and (x0, ξ0) ∈ T ∗X \ 0

( ≃ X × (Rn \ {0})). Then we say that (x0, ξ0) /∈ WFA(u) ( ⊂ T ∗X \ 0) if there are

a bounded open neighborhood U of x0 and v ∈ A′(U) such that v|U = u|U in B(U)

and (x0, ξ0) /∈ WFA(v)

Remark. (i) WFA(u) for u ∈ B(X) is well-defined. Indeed, it follows from The-

orem 2.6.5 in [6] that for any v ∈ A′(Rn) with x0 /∈ supp v there is R1 > 0 such

that gR(D)v is analytic at x0 if R ≥ R1, where {gR(ξ)}R≥R0 is a family of symbols

satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of [6].

(iii) From Theorem 3.1.6 in [6] and the results in [4] it follows that our definition

of WFA(u) coincides with the usual definition.

Let U be an open subset of the cosphere bundle S∗Rn over Rn, which is identified

with Rn × Sn−1. We define

C(U) := B(Rn)/{u ∈ B(Rn); WFA(u) ∩ U = ∅}.

Since B is a flabby sheaf, we have

C(U) = B(U)/{u ∈ B(U); WFA(u) ∩ U = ∅}

if U is an open subset of Rn and U ⊂ U × Sn−1. Elements of C(U) are called

microfunctions on U . We can define the restriction map C(U) ∋ u 7→ u|V ∈ C(V)

for open subsets U and V of Rn × Sn−1 with V ⊂ U . Let Ω be an open subset of

Rn × Sn−1. We define the presheaf CΩ on Ω associating C(U) to every open subset

U of Ω. Then CΩ is a flabby sheaf ( see, e.g., Theorem 3.6.1 of [6]). For each open

subset U of Rn we define the mapping sp: B(U) → C(U×Sn−1) such that the residue

class in C(U × Sn−1) of u ∈ B(U) is equal to sp(u). We also write u|U = sp(u)|U for

u ∈ B(U) and v|U = sp(v|U)|U for v ∈ F0, where U is an open subset of U × Sn−1.
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Assume that a(ξ, y, η) ∈ C∞(Rn ×Rn ×Rn) and there are positive constants Ck

( k ≥ 0) such that

|∂α
ξ Dβ+β̃

y ∂γ
η a(ξ, y, η)|(1.2)

≤ C|α|+|β̃|+|γ|(A/R)|β|⟨ξ⟩m1+|β|⟨η⟩m2 exp[δ1⟨ξ⟩ + δ2⟨η⟩]

if α, β, β̃, γ ∈ (Z+)n, ξ, y, η ∈ Rn and ⟨ξ⟩ ≥ R|β|, where Dy = −i∂y, R ≥ 1, A ≥ 0,

m1, m2, δ1, δ2 ∈ R and Z+ = N ∪ {0}. It should be remarked that some functions

satisfying the estimates (1.2) with m1 = m2 = 0 and δ1 = δ2 = 0 are given in

Proposition 2.2.3 of [6]. We define pseudodifferential operators a(Dx, y,Dy) and
ra(Dx, y,Dy) by

a(Dx, y,Dy)u(x) = (2π)−nF−1
ξ

[∫ (∫
e−iy·(ξ−η)a(ξ, y, η)û(η) dη

)
dy

]
(x)

and ra(Dx, y,Dy)u = b(Dx, y,Dy)u for u ∈ S∞, respectively, where b(ξ, y, η) =

a(η, y, ξ). Applying the same argument as in the proof of Theorem 2.3.3 of [6] we

have the following

Proposition 1.2. a(Dx, y,Dy) can be extended to a continuous linear operator

from Sε2 to Sε1 and from S ′
−ε2

to S ′
−ε1

, respectively, if

(1.3)

 ν > 1, ε2 − δ2 = ν(ε1 + δ1)+,

ε1 + δ1 ≤ 1/R, R ≥ e
√

nνA/(ν − 1),

where c+ = max{c, 0}. Similarly, ra(Dx, y,Dy) can be extended to a continuous

linear operator from S−ε1 to S−ε2 and from S ′
ε1

to S ′
ε2

, respectively, if (1.3) is valid.

Remark. (i) We had a slight improvement of the remark of Theorem 2.3.3 of

[6], i.e., we can take R1(S, T, ν) = e
√

nν/(ν − 1) there instead of R1(S, T, ν) =

enν/(ν − 1) if n = n′ = n′′, S(y, ξ) = −y · ξ and T (y, η) = y · η. This is reflected in

the condition (1.3).

(ii) Since for any open sets Xj ( j = 1, 2) with X1 b X2 one can construct a

symbol a(ξ, y, η) satisfying (1.2) with m1 = m2 = 0 and δ1 = δ2 = 0, supp a ⊂
Rn×X2×Rn and a(ξ, y, η) = 1 for (ξ, y, η) ∈ Rn×X1×Rn, one can use the operator

a(Dx, y,Dy) instead of cut-off functions.

Definition 1.3. Let Γ be an open conic subset of Rn × (Rn \ {0}), and let X be

an open subset of Rn. Moreover, let R0 ≥ 0.
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(i) Let R0 ≥ 1, m, δ ∈ R and A,B ≥ 0, and let a(x, ξ) ∈ C∞(Rn × Rn). We say

that a(x, ξ) ∈ Sm,δ(R0, A,B) if a(x, ξ) satisfies

|a(α+α̃)

(β+β̃)
(x, ξ)| ≤ C|α̃|+|β̃|(A/R0)

|α|(B/R0)
|β|⟨ξ⟩m+|β|−|α̃|eδ⟨ξ⟩

for any α, α̃, β, β̃ ∈ (Z+)n and (x, ξ) ∈ Rn × Rn with ⟨ξ⟩ ≥ R0(|α| + |β|), where

a
(α)
(β)(x, ξ) = ∂α

ξ Dβ
xa(x, ξ) and the Ck are independent of α and β. We also write

Sm(R0, A,B) = Sm,0(R0, A,B) and Sm(R0, A) = Sm(R0, A,A). We define S+(R0,

A,B) :=
∩

δ>0 S0,δ(R0, A,B).

(ii) Let R0 ≥ 1, mj, δj ∈ R ( j = 1, 2), Aj ≥ 0 ( j = 1, 2) and B ≥ 0, and let

a(ξ, y, η) ∈ C∞(Rn × Rn × Rn). We say that a(ξ, y, η) ∈ Sm1,m2,δ1,δ2(R0, A1, B,A2)

if a(ξ, y, η) satisfies

|∂α+α̃
ξ Dβ1+β2+β̃

y ∂γ+γ̃
η a(ξ, y, η)| ≤ C|α̃|+|β̃|+|γ̃|(A1/R0)

|α|(B/R0)
|β1|+|β2|

× (A2/R0)
|γ|⟨ξ⟩m1+|β1|−|α̃|⟨η⟩m2+|β2|−|γ̃| exp[δ1⟨ξ⟩ + δ2⟨η⟩]

for any α, α̃, β1, β2, β̃, γ, γ̃ ∈ (Z+)n, (ξ, y, η) ∈ Rn×Rn×Rn with ⟨ξ⟩ ≥ R0(|α|+ |β1|)
and ⟨η⟩ ≥ R0(|γ|+|β2|). We also write Sm1,m2,δ1,δ2(R0, A) = Sm1,m2,δ1,δ2(R0, A,A,A).

Similarly, we define S+(R0, A1, B,A2) =
∩

δ>0 S0,0,δ,δ(R0, A1, B,A2).

(iii) Let A,B ≥ 0, and let a(x, ξ) ∈ C∞(Γ). We say that a(x, ξ) ∈ PS+(Γ; R0, A,

B) if a(x, ξ) satisfies

|a(α+α̃)
(β) (x, ξ)| ≤ C|α̃|,δA

|α|B|β||α|!|β|!⟨ξ⟩−|α|−|α̃|eδ⟨ξ⟩

for any α, α̃, β ∈ (Z+)n, (x, ξ) ∈ Γ with |ξ| ≥ 1 and ⟨ξ⟩ ≥ R0|α| and δ > 0.

We also write PS+(Γ; R0, A) = PS+(Γ; R0, A,A). Moreover, we say that a(x, ξ) ∈
PS+(X; R0, A,B) if a(x, ξ) ∈ C∞(X×Rn) and a(x, ξ) ∈ PS+(X×(Rn\{0}); R0, A,

B).

(iv) Let m, δ ∈ R and A,C0 ≥ 0, and let {aj(x, ξ)}j∈Z+ ∈
∏

j∈Z+
C∞(Γ). We say

that a(x, ξ) ≡ {aj(x, ξ)}j∈Z+ ∈ FSm,δ(Γ; C0, A) if a(x, ξ) satisfies

|a(α)
j(β)(x, ξ)| ≤ CCj

0A
|α|+|β|j!|α|!|β|!⟨ξ⟩m−j−|α|eδ⟨ξ⟩

for any j ∈ Z+, α, β ∈ (Z+)n and (x, ξ) ∈ Γ with |ξ| ≥ 1, where C is independent

of α, β and j. We define FS+(Γ; C0, A) :=
∩

δ>0 FS0,δ(Γ; C0, A). We also write

a(x, ξ) =
∑∞

j=0 aj(x, ξ) formally. Moreover, we write FS+(X; C0, A) = FS+(X ×
(Rn \ {0}); C0, A).

(v) For a(x, ξ) ≡
∑∞

j=0 aj(x, ξ) ∈ FS+(Γ; C0, A) we define the symbol (ta)(x, ξ)

by

(ta)(x, ξ) =
∞∑

j=0

bj(x, ξ), bj(x, ξ) =
∑

k+|α|=j

(−1)|α|a
(α)
k(α)(x,−ξ)/α!.
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Remark. It is easy to see that (ta)(x, ξ) ∈ FS+(Γ̌; max{C0, 4nA2}, 2A). Moreover,

we have (t(ta))(x, ξ) = a(x, ξ).

Let Γ be an open conic subset of Rn × (Rn \ {0}), and assume that a(x, ξ) ∈
PS+(Γ; R0, A), where A ≥ 0 and R0 ≥ 1. Let Γj ( 0 ≤ j ≤ 2) be open conic

subsets of Γ such that Γ0 b Γ1 b Γ2 b Γ, and write Γ0 = Γ ∩ (Rn × Sn−1), where

Γ2 b Γ implies that Γ0
2 b Γ. It follows from Proposition 2.2.3 of [6] that there

are symbols ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1, Γ2), C(Γ1, Γ2)) ( R ≥ 4) satisfying

0 ≤ ΦR(ξ, y, η) ≤ 1, supp ΦR ⊂ Rn × Γ2 and ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ Rn × Γ1

with ⟨η⟩ ≥ R. Put aR(ξ, y, η) = ΦR(ξ, y, η)a(y, η). Then we have aR(ξ, y, η) ∈
S+(R,C∗, 2A + C(Γ1, Γ2), A + C(Γ1, Γ2)) for R ≥ max{4, R0}. Let u ∈ C(Γ0

0), and

choose v ∈ F0 so that v|Γ0
0

= u. Applying Proposition 1.2 with a(ξ, y, η) = aR(η, y, ξ)

and noting that aR(Dx, y,Dy) = ra(Dx, y,Dy), we can see that aR(Dx, y,Dy)v is

well-defined and belongs to F0 if R ≥ max{4, R0, 2e
√

n(2A+C(Γ1, Γ2))}. Moreover,

aR(Dx, y,Dy)v determines an element (aR(Dx, y,Dy)v)|U ∈ B(U) and, therefore, an

element sp((aR(Dx, y,Dy)v)|U)|Γ0
0
(≡ (aR(Dx, y,Dy)v)|Γ0

0
) ∈ C(Γ0

0), where U is a

bounded open subset of Rn satisfying Γ0
0 ⊂ U × Sn−1. It follows from Lemma

2.1 of [7] that (aR(Dx, y,Dy)v)|Γ0
0

does not depend on the choice of ΦR(ξ, y, η) if

ΦR(ξ, y, η) ∈ S0,0,0,0(R,B) and R ≥ R(A,B, Γ0, Γ1), where R(A,B, Γ0, Γ1) > 0.

From Lemma 2.2 of [7] it follows that for each conic subset Ω of Rn×(Rn \{0}) with

Ω b Γ0 there is R(A, Ω, Γ0, Γ1, Γ2) > 0 such that WFA(aR(Dx, y,Dy)w) ∩ Ω = ∅ if

R ≥ R(A, Ω, Γ0, Γ1, Γ2), w ∈ F0 and WFA(w) ∩ Γ0 = ∅. Therefore, we can define

the operator a(x,D): C(Γ0
0) → C(Γ0

0) by a(x,D)u = (aR(Dx, y,Dy)v)|Γ0
0

for R ≫ 1,

and the operator a(x, D): C(Γ0) → C(Γ0). Moreover, it follows from Lemma 2.2 of

[7] that

a(x,D)(w|U) = (a(x,D)w)|U for w ∈ C(V),

where U and V are open subsets of Rn×Sn−1 satisfying U ⊂ V ⊂ Γ0. So we can define

a(x,D): CΓ0 → CΓ0 , which is a sheaf homomorphism. Let X be an open subset of

Rn, and assume that a(x, ξ) ∈ PS+(X; R0, A). Similarly, taking Γ = X×(Rn\{0}),
we can define the operator a(x,D): B(U) → B(U)/A(U) and the operator a(x,D):

B(U)/A(U) → B(U)/A(U), where U is a bounded open subset of X and A(U)

denotes the space of all real analytic functions defined in U ( see, also, §2.7 of

[6]). In doing so, we may choose ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1, Γ2), C∗) so that

supp ΦR ⊂ Rn × X2 × Rn and ΦR(ξ, y, η) = 1 for (ξ, y, η) ∈ Rn × X1 × Rn, where

Γj = Xj × (Rn \ {0}). Moreover, we can define the operator a(x,D): BX → BX/AX

and the operator a(x,D): BX/AX → BX/AX , which are sheaf homomorphisms.
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Here AX denotes the sheaf ( of germs) of real analytic functions on X.

Assume that a(x, ξ) ≡
∑∞

j=0 aj(x, ξ) ∈ FS+(Γ; C0, A). Choose {ϕR
j (ξ)}j∈Z+ ⊂

C∞(Rn) so that 0 ≤ ϕR
j (ξ) ≤ 1,

ϕR
j (ξ) =

0 if ⟨ξ⟩ ≤ 2Rj,

1 if ⟨ξ⟩ ≥ 3Rj,

|∂α+β
ξ ϕR

j (ξ)| ≤ Ĉ|β|(Ĉ/R)|α|⟨ξ⟩−|β| if |α| ≤ 2j,

where the Ĉ|β| and Ĉ do not depend on j and R ( see §2.2 of [6]). Then it follows

from Lemma 2.2.4 of [6] that

ã(x, ξ) :=
∞∑

j=0

ϕ
R/2
j (ξ)aj(x, ξ) ∈ PS+(Γ; R, 2A + 3Ĉ, A)

if R > C0. So we can define a(x,D)u ∈ C(Γ0) by a(x,D)u = ã(x,D)u. Indeed, ap-

plying the same argument as in §3.7 of [6] we can see that a(x,D)u ∈ C(Γ0) does not

depend on the choice of {ϕR
j (ξ)}. Similarly, a(x,D) defines a sheaf homomorphism

a(x,D): CΓ0 → CΓ0 . If Γ = X × (Rn \ {0}), then we can also define the operator

a(x,D): B(U)/A(U) → B(U)/A(U) and the operator a(x,D): BX/AX → BX/AX ,

where U is an open subset satisfying U b X.

Let Γ be an open conic subset of Rn×(Rn\{0}), and let p(x, ξ) ∈ FS+(Γ; C0, A),

where A,C0 ≥ 0.

Theorem 1.4. Let U and V be bounded open subsets of Γ0 in Rn × Sn−1 such

that V b U b Γ0. Assume that WFA(f) ∩ U = ∅ if f ∈ L2(Rn), WFA(f) ∩ ∂U = ∅
and p(x,D)(f |U) = 0 in C(U). Then (tp)(x,D) maps C(V̌) onto C(V̌), i.e., for any

f ∈ C(V̌) there is u ∈ C(V̌) satisfying (tp)(x,D)u = f in C(V̌).

Corollary 1.5 ([7]). Let z0 = (x0, ξ0) ∈ Γ, and assume that p(x,D) is ana-

lytic microhypoelliptic at z0, i.e., there is an open neighborhood U of (x0, ξ0/|ξ0|)
in Γ0 such that the sheaf homomorphism p(x,D) : CU → CU is injective. Then

(tp)(x,D) is microlocally solvable at (x0,−ξ0), i.e., there is an open neighborhood U
of (x0, ξ0/|ξ0|) in Γ0 such that (tp)(x,D) : C(U) → C(U) is surjective.

Corollary 1.6. Assume that p(x, ξ) ≡
∑∞

j=0 pj(x, ξ) ∈ FSm,0(Γ; C0, A), and that

p0(x, ξ) is positively homogeneous of degree m in ξ. Let U and V be bounded open

subsets of Γ0 satisfying V b U , and assume that there is a continuous vector field

ϑ : U ∋ z 7→ ϑ(z) ∈ R2n such that p0(x, ξ) is microhyperbolic with respect to ϑ(z)
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at each z ∈ U . Moreover, we assume that for any z0 ∈ U there is no generalized

semi-bicharacteristics {z(s)}s∈(−∞,0] of p0 starting from z0 in the negative direction

such that (x(s), ξ(s)/|ξ(s)|) ∈ U for s ∈ (−∞, 0], where the parameter s of the

curve is chosen so that −s coincides with the arc length from z0 to z(s) and z(s) =

(x(s), ξ(s)). For terminology we refer to §4.3 of [6]. Then (tp)(x,D) : C(V̌) → C(V̌)

is surjective.

Corollary 1.7. Let z0 = (x0, ξ0) ∈ Γ, and assume that p(x, ξ) ≡
∑∞

j=0 pj(x, ξ) ∈
FSm,0(Γ; C0, A), and that p0(x, ξ) is positively homogeneous of degree m in ξ and

microhyperbolic with respect to (0, e1) ∈ R2n at z0, where e1 = (1, 0, · · · , 0) ∈ Rn.

Then (tp)(x,D) is microlocally solvable at (x0,−ξ0).

Remark. The above corollary was proved in Theorem 5.4.1 of [6] in a different

way.

Theorem 1.4 can be proved in the same way as in [7]. We shall give the outline

of the proof in the next section. Then Corollary 1.5 easily follows from Theorem 1.4.

Combining Theorem 4.3.8 of [6] and Theorem 1.4 one can easily prove Corollary 1.6.

Corollary 1.7 is an immediate consequence of Corollary 1.6.

2. Proof of Theorem 1.4

Let Γj ( j = 1, 2) be open conic subsets of Γ such that V b U b Γ0
1 b Γ0

2 b Γ0,

where Γ0
j = Γj ∩ (Rn × Sn−1). Choose ΦR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Γ1, Γ2), C(Γ1,

Γ2)) ( R ≥ 4) so that 0 ≤ ΦR(ξ, y, η) ≤ 1, supp ΦR ⊂ Rn × Γ2 and ΦR(ξ, y, η) = 1

for (ξ, y, η) ∈ Rn × Γ1 with ⟨η⟩ ≥ R. We put

pR(ξ, y, η) = ΦR(ξ, y, η)
∞∑

j=0

ϕ
R/2
j (η)pj(y, η),

where R > max{4, C0}. Then we have

pR(ξ, y, η) ∈ S+(R,C∗, 2A + C(Γ1, Γ2), 2A + 3Ĉ + C(Γ1, Γ2)).

By definition there is R(A,U , Γ1, Γ2) > max{4, C0} such that

(2.1) (pR(Dx, y,Dy)v)|U = p(x,D)(v|U) in C(U)

if R ≥ R(A,U , Γ1, Γ2) and v ∈ F0. Let Ωj ( j = 1, 2) be open conic subset satisfying

V b Ω0
2 b Ω0

1 b U , and let ΨR(ξ, y, η) ∈ S0,0,0,0(R,C∗, C(Ω2, Ω1), C(Ω2, Ω1)) ( R ≥
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4) satisfy supp ΨR ⊂ Rn×Ω1 and ΨR(ξ, y, η) = 1 for (ξ, y, η) ∈ Rn×Ω2 with ⟨η⟩ ≥ R.

We assume that R ≥ max{R(A,U , Γ1, Γ2), 25e
√

n max{2A+C(Γ1, Γ2), C(Ω2, Ω1)}}.
For ε, ν ∈ R we define

L2
ε,ν := {f ∈ S ′

−ε; ⟨x⟩νeε⟨D⟩f(x) ∈ L2(Rn)}.

L2
ε,ν is a Hilbert space in which the scalar product is given by

(f, g)L2
ε,ν

:= (⟨x⟩νeε⟨D⟩f, ⟨x⟩νeε⟨D⟩g)L2 ,

where (·, ·)L2 denotes the scalar product of L2(Rn). We denote by X the inductive

limit lim−→L2
1/j,1/j of the sequence {L2

1/j,1/j} ( as a locally convex space). Define an

operator T : L2(Rn) → X ×X as follows;

(i) the domain D(T ) of T is given by

D(T ) = {f ∈ L2(Rn); (1 − ΨR(Dx, y,Dy))f ∈ X and pR(Dx, y,Dy)f ∈ X},

(ii) Tf = ((1 − ΨR(Dx, y,Dy))f, pR(Dx, y,Dy)f) for f ∈ D(T ).

Let f ∈ D(T ). Then (2.1) gives p(x,D)(f |U) = 0 in C(U). Moreover, it follows

from Lemma 2.1 of [7] that there is R(Ω1, Ω2,U) > 0 such that WFA(f) ∩ ∂U =

∅ if R ≥ R(Ω1, Ω2,U). Therefore, by the assumption of Theorem 1.4 we have

WFA(f) ∩ U = ∅. From Lemma 2.9 of [7] there are R1(Ω1, Ω2,U) > 0 and

δ(f, Ω1,U) > 0 such that ΨR(Dx, y,Dy)f ∈ L2
δ,ν if R ≥ R1(Ω1, Ω2,U), ν ∈ R

and δ < min{1/(2R), δ(f, Ω1,U)}. This implies that f ∈ X , i.e., D(T ) = X . We

can easily prove that T is a closed operator ( see §3 of [7]).

Repeating the same argument as in §3 of [7], we can show that for any f ∈ A′(Rn)

there is u ∈ F0 satisfying

(tp)(x,D)(u|V̌) = f |V̌ in C(V̌),

which proves Theorem 1.4.
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