Remarks on Propagation of Analytic Singularities and Solvability in the Space of Microfunctions

Seiichiro Wakabayashi (University of Tsukuba)

1. Introduction

Let P be a linear partial differential operator on \mathbb{R}^n with C^{∞} coefficients, and let $x^0 \in \mathbb{R}^n$. In Treves [5] and Yoshikawa [8] it was proved that if P is hypoelliptic at x^0 , then there is a neighborhood U of x^0 satisfying the following; for every $f \in C^{\infty}(U)$ there is $u \in \mathcal{D}'(U)$ such that ${}^tPu = f$ in U. Here tP denotes the transposed operator of P. Hörmander [3] generalized their results (see Theorem 1.2.4 of [3]). Recently Albanese, Corli and Rodino proved in [1] that the result of Treves and Yoshikawa is still valid in the framework of the Gevrey classes and the spaces of ultradistributions. Moreover, Cordaro and Trépreau proved in [2] that Hörmander's result can be generalized in the space of hyperfunctions for partial differential operators with analytic coefficients. In particular, they proved that P is locally solvable at x^0 in the space of hyperfunctions if the coefficients of P are analytic and P is analytic hypoelliptic at x^0 . The aim of this article is to microlocalize their results for a pseudodifferential operator p(x, D), *i.e.*, if \mathcal{U} is a bounded open subset of the cosphere bundle $S^*\mathbb{R}^n$ ($\simeq \mathbb{R}^n \times S^{n-1}$) over \mathbb{R}^n and if p(x, D) satisfies

$$f \in L^{2}(\mathbb{R}^{n}), \quad WF_{A}(f) \cap \partial \mathcal{U} = \emptyset, \quad WF_{A}(p(x, D)f) \cap \mathcal{U} = \emptyset$$
$$\Longrightarrow$$
$$WF_{A}(f) \cap \mathcal{U} = \emptyset,$$

then the transposed operator ${}^{t}p(x, D)$: $\mathcal{C}(\check{\mathcal{U}}) \to \mathcal{C}(\check{\mathcal{U}})$ is surjective, where $\check{\mathcal{U}} = \{(x, \xi); (x, -\xi) \in \mathcal{U}\}$ and $\mathcal{C}(\mathcal{U})$ denotes the space of microfunctions on \mathcal{U} .

We shall explain briefly about hyperfunctions, microfunctions and pseudodifferential operators acting on them. For the details we refer to [6]. Let $\varepsilon \in \mathbb{R}$, and denote $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$, where $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ and $|\xi| = (\sum_{j=1}^n |\xi_j|^2)^{1/2}$. We define

$$\widehat{\mathcal{S}}_{\varepsilon} := \{ v(\xi) \in C^{\infty}(\mathbb{R}^n); \ e^{\varepsilon \langle \xi \rangle} v(\xi) \in \mathcal{S} \}$$

where \mathcal{S} ($\equiv \mathcal{S}(\mathbb{R}^n)$) denotes the Schwartz space. We introduce the topology to $\widehat{\mathcal{S}}_{\varepsilon}$ in a natural way. Then the dual space $\widehat{\mathcal{S}}'_{\varepsilon}$ of $\widehat{\mathcal{S}}_{\varepsilon}$ can be identified with $\{v(\xi) \in \mathcal{D}';$ $e^{-\varepsilon\langle\xi\rangle}v(\xi)\in\mathcal{S}'\}$, since $\mathcal{D}(=C_0^{\infty}(\mathbb{R}^n))$ is dense in $\widehat{\mathcal{S}}_{\varepsilon}$. If $\varepsilon\geq 0$, then $\widehat{\mathcal{S}}_{\varepsilon}$ is a dense subset of \mathcal{S} and we can define $\mathcal{S}_{\varepsilon} := \mathcal{F}^{-1}[\widehat{\mathcal{S}}_{\varepsilon}] \ (= \mathcal{F}[\widehat{\mathcal{S}}_{\varepsilon}]) \ (\subset \mathcal{S})$, where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transformation and the inverse Fourier transformation on \mathcal{S} (or \mathcal{S}'), respectively. For example, $\mathcal{F}[u](\xi) = \int e^{-ix\cdot\xi} u(x) \, dx$ for $u \in \mathcal{S}$, where $x \cdot \xi = \sum_{j=1}^{n} x_j \xi_j$ for $x = (x_1, \cdots, x_n) \in \mathbb{R}^n$ and $\xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n$. Let $\varepsilon \ge 0$. We introduce the topology in $\mathcal{S}_{\varepsilon}$ so that $\mathcal{F}: \widehat{\mathcal{S}}_{\varepsilon} \to \mathcal{S}_{\varepsilon}$ is homeomorphic. Denote by $\mathcal{S}'_{\varepsilon}$ the dual space of $\mathcal{S}_{\varepsilon}$. Since $\mathcal{S}_{\varepsilon}$ is dense in \mathcal{S} , we can regard \mathcal{S}' as a subspace of $\mathcal{S}'_{\varepsilon}$. We can define the transposed operators ${}^{t}\mathcal{F}$ and ${}^{t}\mathcal{F}^{-1}$ of \mathcal{F} and \mathcal{F}^{-1} , which map $\mathcal{S}'_{\varepsilon}$ and $\widehat{\mathcal{S}}'_{\varepsilon}$ onto $\widehat{\mathcal{S}}'_{\varepsilon}$ and $\mathcal{S}'_{\varepsilon}$, respectively. Since $\widehat{\mathcal{S}}_{-\varepsilon} \subset \widehat{\mathcal{S}}'_{\varepsilon}$ ($\subset \mathcal{D}'$), we can define $\mathcal{S}_{-\varepsilon} = {}^t \mathcal{F}^{-1}[\widehat{\mathcal{S}}_{-\varepsilon}]$, and introduce the topology in $\mathcal{S}_{-\varepsilon}$ so that ${}^t\mathcal{F}^{-1}: \widehat{\mathcal{S}}_{-\varepsilon} \to \mathcal{S}_{-\varepsilon}$ is homeomorphic. $\mathcal{S}'_{-\varepsilon}$ denotes the dual space of $\mathcal{S}_{-\varepsilon}$. We note that $\mathcal{S}'_{-\varepsilon} = \mathcal{F}[\widehat{\mathcal{S}}'_{-\varepsilon}] \subset \mathcal{S}' \subset \mathcal{S}'_{\varepsilon}$ and $\mathcal{F} = {}^t\mathcal{F}$ on \mathcal{S}' . So we also represent ${}^{t}\mathcal{F}$ by \mathcal{F} . Let $\mathcal{A}(\mathbb{C}^{n})$ be the space of entire analytic functions on \mathbb{C}^n , and let K be a compact subset of \mathbb{C}^n . We denote by $\mathcal{A}'(K)$ the space of analytic functionals carried by K, *i.e.*, $u \in \mathcal{A}'(K)$ if and only if (i) u: $\mathcal{A}(\mathbb{C}^n) \ni \varphi \mapsto u(\varphi) \in \mathbb{C}$ is a linear functional, and (ii) for any neighborhood ω of K in \mathbb{C}^n there is $C_{\omega} \geq 0$ such that $|u(\varphi)| \leq C_{\omega} \sup_{z \in \omega} |\varphi(z)|$ for $\varphi \in \mathcal{A}(\mathbb{C}^n)$. Define $\mathcal{A}'(\mathbb{R}^n) := \bigcup_{K \in \mathbb{R}^n} \mathcal{A}'(K), \ \mathcal{S}_{\infty} := \bigcap_{\varepsilon \in \mathbb{R}} \mathcal{S}_{\varepsilon}, \ \mathcal{E}_0 := \bigcap_{\varepsilon > 0} \mathcal{S}_{-\varepsilon} \ \text{and} \ \mathcal{F}_0 := \bigcap_{\varepsilon > 0} \mathcal{S}'_{\varepsilon}.$ Here $A \subseteq B$ means that the closure \overline{A} of A is compact and included in the interior $\overset{\circ}{B}$ of B. We note that $\mathcal{F}^{-1}[C_0^{\infty}(\mathbb{R}^n)] \subset \mathcal{S}_{\infty}$ and that \mathcal{S}_{∞} is dense in $\mathcal{S}_{\varepsilon}$ and $\mathcal{S}'_{\varepsilon}$ for $\varepsilon \in \mathbb{R}$. For $u \in \mathcal{A}'(\mathbb{R}^n)$ we can define the Fourier transform $\hat{u}(\xi)$ of u by

$$\hat{u}(\xi) \left(=\mathcal{F}[u](\xi)\right) = u_z(e^{-iz\cdot\xi}),$$

where $z \cdot \xi = \sum_{j=1}^{n} z_j \xi_j$ for $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ and $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. By definition we have $\hat{u}(\xi) \in \bigcap_{\varepsilon > 0} \widehat{S}_{-\varepsilon}$ ($= \mathcal{F}[\mathcal{E}_0]$). Therefore, we can regard $\mathcal{A}'(\mathbb{R}^n)$ as a subspace of \mathcal{E}_0 , *i.e.*, $\mathcal{A}'(\mathbb{R}^n) \subset \mathcal{E}_0 \subset \mathcal{F}_0$, (see Lemma 1.1.2 of [6]). The space \mathcal{F}_0 plays an important role in our treatment as the space \mathcal{S}' does in the framework of C^{∞} and distributions. For a bounded open subset X of \mathbb{R}^n we define the space $\mathcal{B}(X)$ of hyperfunctions in X by

$$\mathcal{B}(X) := \mathcal{A}'(\overline{X}) / \mathcal{A}'(\partial X),$$

where ∂X denotes the boundary of X.

Let $u \in \mathcal{F}_0$. We define

$$\mathcal{H}(u)(x, x_{n+1}) := (\operatorname{sgn} x_{n+1}) \exp[-|x_{n+1}| \langle D \rangle] u(x)/2$$

(= (sgn x_{n+1}) \mathcal{F}_{\xi}^{-1} [\exp[-|x_{n+1}| \langle \xi \rangle] \hat{u}(\xi)](x)/2 \in \mathcal{S}'(\mathbb{R}^n))

for $x_{n+1} \in \mathbb{R} \setminus \{0\}$, and

supp
$$u := \bigcap \{F; F \text{ is a closed subset of } \mathbb{R}^n \text{ and there is a real}$$

analytic function $U(x, x_{n+1}) \text{ in } \mathbb{R}^{n+1} \setminus F \times \{0\}$
such that $U(x, x_{n+1}) = \mathcal{H}(u)(x, x_{n+1}) \text{ for } x_{n+1} \neq 0\}$

We note that supp u coincides with the support of u as a distribution if $u \in \mathcal{S}'$ (see Lemma 1.2.2 of [6]). Let K be a compact subset of \mathbb{R}^n . Then $u \in \mathcal{A}'(K)$ if and only if u is an analytic functional and supp $u \subset K$ (see Proposition 1.2.6 of [6]). It follows from Theorem 1.3.3 of [6] that there is $v \in \mathcal{A}'(K)$ satisfying supp $(u-v) \cap K \subset \partial K$, and if $v = v_1, v_2$ are such functionals in $\mathcal{A}'(K)$ we have supp $(v_1 - v_2) \subset \partial K$. Therefore, we can define the restriction map from \mathcal{F}_0 to $\mathcal{A}'(K)/\mathcal{A}'(\partial K)$ ($= \mathcal{B}(\overset{\circ}{K})$) which is surjective. For $x^0 \in \mathbb{R}^n$ we say that u is analytic at x^0 if $\mathcal{H}(u)(x, x_{n+1})$ can be continued analytically from $\mathbb{R}^n \times (0, \infty)$ to a neighborhood of $(x^0, 0)$ in \mathbb{R}^{n+1} . We define

sing supp
$$u := \{x \in \mathbb{R}^n; u \text{ is not analytic at } x\}.$$

Next let $u \in \mathcal{B}(X)$, where X is a bounded open subset of \mathbb{R}^n . Then there is $v \in \mathcal{A}'(\overline{X})$ such that the residue class of v is u in $\mathcal{B}(X)$. We define

supp $u := \text{supp } v \cap X$, sing supp $u := \text{sing supp } v \cap X$.

These definitions do not depend on the choice of v. So we say that u is analytic at x^0 if $x^0 \notin sing supp u$. Let X be an open subset of \mathbb{R}^n . We also define $\mathcal{B}(X)$ (see Definition 1.4.5 of [6]). For open subsets U and V of X with $V \subset U$ the restriction map $\rho_V^U : \mathcal{B}(U) \ni u \mapsto u|_V \in \mathcal{B}(V)$ can be defined so that ρ_U^U is the identity mapping and $\rho_W^V \circ \rho_V^U = \rho_W^U$ for open subsets U, V and W of X with $W \subset V \subset U$. By definition we can also define the restriction map from \mathcal{F}_0 to $\mathcal{B}(X)$, and we denote by $v|_X$ the restriction of $v \in \mathcal{F}_0$ to $\mathcal{B}(X)$ (or on X). We define the presheaf \mathcal{B}_X by associating $\mathcal{B}(U)$ to every open subset U of X. By definition \mathcal{B}_X is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.

Definition 1.1. (i) Let $u \in \mathcal{F}_0$. The analytic wave front set $WF_A(u) \subset T^*\mathbb{R}^n \setminus 0$ ($\simeq \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$) is defined as follows: $(x^0, \xi^0) \in T^*\mathbb{R}^n \setminus 0$ does not belong to $WF_A(u)$ if there are a conic neighborhood Γ of ξ^0 , $R_0 > 0$ and $\{g^R(\xi)\}_{R \geq R_0} \subset C^{\infty}(\mathbb{R}^n)$ such that $g^R(\xi) = 1$ in $\Gamma \cap \{\langle \xi \rangle \geq R\}$,

(1.1)
$$|\partial_{\xi}^{\alpha+\tilde{\alpha}}g^{R}(\xi)| \leq C_{|\tilde{\alpha}|}(C/R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}$$

if $\langle \xi \rangle \geq R|\alpha|$, and $g^R(D)u$ ($= \mathcal{F}^{-1}[g^R(\xi)\hat{u}(\xi)]$) is analytic at x^0 for $R \geq R_0$, where C is a positive constant independent of R.

(ii) Let X be an open subset of \mathbb{R}^n , and let $u \in \mathcal{B}(X)$ and $(x^0, \xi^0) \in T^*X \setminus 0$ ($\simeq X \times (\mathbb{R}^n \setminus \{0\})$). Then we say that $(x^0, \xi^0) \notin WF_A(u)$ ($\subset T^*X \setminus 0$) if there are a bounded open neighborhood U of x^0 and $v \in \mathcal{A}'(\overline{U})$ such that $v|_U = u|_U$ in $\mathcal{B}(U)$ and $(x^0, \xi^0) \notin WF_A(v)$

Remark. (i) $WF_A(u)$ for $u \in \mathcal{B}(X)$ is well-defined. Indeed, it follows from Theorem 2.6.5 in [6] that for any $v \in \mathcal{A}'(\mathbb{R}^n)$ with $x^0 \notin \text{supp } v$ there is $R_1 > 0$ such that $g^R(D)v$ is analytic at x^0 if $R \geq R_1$, where $\{g^R(\xi)\}_{R \geq R_0}$ is a family of symbols satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of [6].

(iii) From Theorem 3.1.6 in [6] and the results in [4] it follows that our definition of $WF_A(u)$ coincides with the usual definition.

Let \mathcal{U} be an open subset of the cosphere bundle $S^*\mathbb{R}^n$ over \mathbb{R}^n , which is identified with $\mathbb{R}^n \times S^{n-1}$. We define

$$\mathcal{C}(\mathcal{U}) := \mathcal{B}(\mathbb{R}^n) / \{ u \in \mathcal{B}(\mathbb{R}^n); WF_A(u) \cap \mathcal{U} = \emptyset \}.$$

Since \mathcal{B} is a flabby sheaf, we have

$$\mathcal{C}(\mathcal{U}) = \mathcal{B}(U) / \{ u \in \mathcal{B}(U); WF_A(u) \cap \mathcal{U} = \emptyset \}$$

if U is an open subset of \mathbb{R}^n and $\mathcal{U} \subset U \times S^{n-1}$. Elements of $\mathcal{C}(\mathcal{U})$ are called microfunctions on \mathcal{U} . We can define the restriction map $\mathcal{C}(\mathcal{U}) \ni u \mapsto u|_{\mathcal{V}} \in \mathcal{C}(\mathcal{V})$ for open subsets \mathcal{U} and \mathcal{V} of $\mathbb{R}^n \times S^{n-1}$ with $\mathcal{V} \subset \mathcal{U}$. Let Ω be an open subset of $\mathbb{R}^n \times S^{n-1}$. We define the presheaf \mathcal{C}_{Ω} on Ω associating $\mathcal{C}(\mathcal{U})$ to every open subset \mathcal{U} of Ω . Then \mathcal{C}_{Ω} is a flabby sheaf (see, e.g., Theorem 3.6.1 of [6]). For each open subset U of \mathbb{R}^n we define the mapping sp: $\mathcal{B}(U) \to \mathcal{C}(U \times S^{n-1})$ such that the residue class in $\mathcal{C}(U \times S^{n-1})$ of $u \in \mathcal{B}(U)$ is equal to $\operatorname{sp}(u)$. We also write $u|_{\mathcal{U}} = \operatorname{sp}(u)|_{\mathcal{U}}$ for $u \in \mathcal{B}(U)$ and $v|_{\mathcal{U}} = \operatorname{sp}(v|_U)|_{\mathcal{U}}$ for $v \in \mathcal{F}_0$, where \mathcal{U} is an open subset of $U \times S^{n-1}$. Assume that $a(\xi, y, \eta) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ and there are positive constants C_k ($k \ge 0$) such that

(1.2)
$$\begin{aligned} |\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)| \\ &\leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|} (A/R)^{|\beta|} \langle \xi \rangle^{m_{1}+|\beta|} \langle \eta \rangle^{m_{2}} \exp[\delta_{1} \langle \xi \rangle + \delta_{2} \langle \eta \rangle] \end{aligned}$$

if $\alpha, \beta, \tilde{\beta}, \gamma \in (\mathbb{Z}_+)^n$, $\xi, y, \eta \in \mathbb{R}^n$ and $\langle \xi \rangle \geq R|\beta|$, where $D_y = -i\partial_y$, $R \geq 1$, $A \geq 0$, $m_1, m_2, \delta_1, \delta_2 \in \mathbb{R}$ and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. It should be remarked that some functions satisfying the estimates (1.2) with $m_1 = m_2 = 0$ and $\delta_1 = \delta_2 = 0$ are given in Proposition 2.2.3 of [6]. We define pseudodifferential operators $a(D_x, y, D_y)$ and $r_a(D_x, y, D_y)$ by

$$a(D_x, y, D_y)u(x) = (2\pi)^{-n} \mathcal{F}_{\xi}^{-1} \Big[\int \Big(\int e^{-iy \cdot (\xi - \eta)} a(\xi, y, \eta) \hat{u}(\eta) \, d\eta \Big) dy \Big](x)$$

and ${}^{r}a(D_{x}, y, D_{y})u = b(D_{x}, y, D_{y})u$ for $u \in S_{\infty}$, respectively, where $b(\xi, y, \eta) = a(\eta, y, \xi)$. Applying the same argument as in the proof of Theorem 2.3.3 of [6] we have the following

Proposition 1.2. $a(D_x, y, D_y)$ can be extended to a continuous linear operator from S_{ε_2} to S_{ε_1} and from $S'_{-\varepsilon_2}$ to $S'_{-\varepsilon_1}$, respectively, if

(1.3)
$$\begin{cases} \nu > 1, \quad \varepsilon_2 - \delta_2 = \nu(\varepsilon_1 + \delta_1)_+, \\ \varepsilon_1 + \delta_1 \le 1/R, \quad R \ge e\sqrt{n\nu}A/(\nu - 1), \end{cases}$$

where $c_{+} = \max\{c, 0\}$. Similarly, ${}^{r}a(D_{x}, y, D_{y})$ can be extended to a continuous linear operator from $S_{-\varepsilon_{1}}$ to $S_{-\varepsilon_{2}}$ and from $S'_{\varepsilon_{1}}$ to $S'_{\varepsilon_{2}}$, respectively, if (1.3) is valid.

Remark. (i) We had a slight improvement of the remark of Theorem 2.3.3 of [6], *i.e.*, we can take $R_1(S, T, \nu) = e\sqrt{n\nu}/(\nu - 1)$ there instead of $R_1(S, T, \nu) = en\nu/(\nu - 1)$ if n = n' = n'', $S(y, \xi) = -y \cdot \xi$ and $T(y, \eta) = y \cdot \eta$. This is reflected in the condition (1.3).

(ii) Since for any open sets X_j (j = 1, 2) with $X_1 \in X_2$ one can construct a symbol $a(\xi, y, \eta)$ satisfying (1.2) with $m_1 = m_2 = 0$ and $\delta_1 = \delta_2 = 0$, supp $a \subset \mathbb{R}^n \times X_2 \times \mathbb{R}^n$ and $a(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times X_1 \times \mathbb{R}^n$, one can use the operator $a(D_x, y, D_y)$ instead of cut-off functions.

Definition 1.3. Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and let X be an open subset of \mathbb{R}^n . Moreover, let $R_0 \geq 0$.

(i) Let $R_0 \ge 1$, $m, \delta \in \mathbb{R}$ and $A, B \ge 0$, and let $a(x, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. We say that $a(x, \xi) \in S^{m,\delta}(R_0, A, B)$ if $a(x, \xi)$ satisfies

$$|a_{(\beta+\tilde{\beta})}^{(\alpha+\tilde{\alpha})}(x,\xi)| \le C_{|\tilde{\alpha}|+|\tilde{\beta}|} (A/R_0)^{|\alpha|} (B/R_0)^{|\beta|} \langle \xi \rangle^{m+|\beta|-|\tilde{\alpha}|} e^{\delta\langle \xi \rangle}$$

for any $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in (\mathbb{Z}_+)^n$ and $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n$ with $\langle \xi \rangle \geq R_0(|\alpha| + |\beta|)$, where $a_{(\beta)}^{(\alpha)}(x,\xi) = \partial_{\xi}^{\alpha} D_x^{\beta} a(x,\xi)$ and the C_k are independent of α and β . We also write $S^m(R_0, A, B) = S^{m,0}(R_0, A, B)$ and $S^m(R_0, A) = S^m(R_0, A, A)$. We define $S^+(R_0, A, B) := \bigcap_{\delta > 0} S^{0,\delta}(R_0, A, B)$.

(ii) Let $R_0 \geq 1$, $m_j, \delta_j \in \mathbb{R}$ (j = 1, 2), $A_j \geq 0$ (j = 1, 2) and $B \geq 0$, and let $a(\xi, y, \eta) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$. We say that $a(\xi, y, \eta) \in S^{m_1, m_2, \delta_1, \delta_2}(R_0, A_1, B, A_2)$ if $a(\xi, y, \eta)$ satisfies

$$\begin{aligned} |\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta^{1}+\beta^{2}+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)| &\leq C_{|\tilde{\alpha}|+|\tilde{\beta}|+|\tilde{\gamma}|} (A_{1}/R_{0})^{|\alpha|} (B/R_{0})^{|\beta^{1}|+|\beta^{2}|} \\ &\times (A_{2}/R_{0})^{|\gamma|} \langle\xi\rangle^{m_{1}+|\beta^{1}|-|\tilde{\alpha}|} \langle\eta\rangle^{m_{2}+|\beta^{2}|-|\tilde{\gamma}|} \exp[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle] \end{aligned}$$

for any $\alpha, \tilde{\alpha}, \beta^1, \beta^2, \tilde{\beta}, \gamma, \tilde{\gamma} \in (\mathbb{Z}_+)^n$, $(\xi, y, \eta) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ with $\langle \xi \rangle \ge R_0(|\alpha| + |\beta^1|)$ and $\langle \eta \rangle \ge R_0(|\gamma| + |\beta^2|)$. We also write $S^{m_1, m_2, \delta_1, \delta_2}(R_0, A) = S^{m_1, m_2, \delta_1, \delta_2}(R_0, A, A, A)$. Similarly, we define $S^+(R_0, A_1, B, A_2) = \bigcap_{\delta > 0} S^{0, 0, \delta, \delta}(R_0, A_1, B, A_2)$.

(iii) Let $A, B \ge 0$, and let $a(x, \xi) \in C^{\infty}(\Gamma)$. We say that $a(x, \xi) \in PS^+(\Gamma; R_0, A, B)$ if $a(x, \xi)$ satisfies

$$|a_{(\beta)}^{(\alpha+\tilde{\alpha})}(x,\xi)| \le C_{|\tilde{\alpha}|,\delta} A^{|\alpha|} B^{|\beta|} |\alpha|! |\beta|! \langle\xi\rangle^{-|\alpha|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}$$

for any $\alpha, \tilde{\alpha}, \beta \in (\mathbb{Z}_+)^n$, $(x,\xi) \in \Gamma$ with $|\xi| \ge 1$ and $\langle \xi \rangle \ge R_0 |\alpha|$ and $\delta > 0$. We also write $PS^+(\Gamma; R_0, A) = PS^+(\Gamma; R_0, A, A)$. Moreover, we say that $a(x,\xi) \in PS^+(X; R_0, A, B)$ if $a(x,\xi) \in C^{\infty}(X \times \mathbb{R}^n)$ and $a(x,\xi) \in PS^+(X \times (\mathbb{R}^n \setminus \{0\}); R_0, A, B)$.

(iv) Let $m, \delta \in \mathbb{R}$ and $A, C_0 \ge 0$, and let $\{a_j(x,\xi)\}_{j\in\mathbb{Z}_+} \in \prod_{j\in\mathbb{Z}_+} C^{\infty}(\Gamma)$. We say that $a(x,\xi) \equiv \{a_j(x,\xi)\}_{j\in\mathbb{Z}_+} \in FS^{m,\delta}(\Gamma; C_0, A)$ if $a(x,\xi)$ satisfies

$$|a_{j(\beta)}^{(\alpha)}(x,\xi)| \le CC_0^j A^{|\alpha|+|\beta|} j! |\alpha|! |\beta|! \langle \xi \rangle^{m-j-|\alpha|} e^{\delta\langle \xi \rangle}$$

for any $j \in \mathbb{Z}_+$, $\alpha, \beta \in (\mathbb{Z}_+)^n$ and $(x,\xi) \in \Gamma$ with $|\xi| \ge 1$, where *C* is independent of α , β and *j*. We define $FS^+(\Gamma; C_0, A) := \bigcap_{\delta>0} FS^{0,\delta}(\Gamma; C_0, A)$. We also write $a(x,\xi) = \sum_{j=0}^{\infty} a_j(x,\xi)$ formally. Moreover, we write $FS^+(X; C_0, A) = FS^+(X \times (\mathbb{R}^n \setminus \{0\}); C_0, A)$.

(v) For $a(x,\xi) \equiv \sum_{j=0}^{\infty} a_j(x,\xi) \in FS^+(\Gamma; C_0, A)$ we define the symbol $({}^ta)(x,\xi)$ by

$$({}^{t}a)(x,\xi) = \sum_{j=0}^{\infty} b_j(x,\xi), \quad b_j(x,\xi) = \sum_{k+|\alpha|=j} (-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi)/\alpha!.$$

Remark. It is easy to see that $({}^{t}a)(x,\xi) \in FS^{+}(\check{\Gamma}; \max\{C_0, 4nA^2\}, 2A)$. Moreover, we have $({}^{t}({}^{t}a))(x,\xi) = a(x,\xi)$.

Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and assume that $a(x,\xi) \in$ $PS^+(\Gamma; R_0, A)$, where $A \geq 0$ and $R_0 \geq 1$. Let Γ_j ($0 \leq j \leq 2$) be open conic subsets of Γ such that $\Gamma_0 \in \Gamma_1 \in \Gamma_2 \in \Gamma$, and write $\Gamma^0 = \Gamma \cap (\mathbb{R}^n \times S^{n-1})$, where $\Gamma_2 \in \Gamma$ implies that $\Gamma_2^0 \in \Gamma$. It follows from Proposition 2.2.3 of [6] that there are symbols $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ ($R \ge 4$) satisfying $0 \leq \Phi^R(\xi, y, \eta) \leq 1$, supp $\Phi^R \subset \mathbb{R}^n \times \Gamma_2$ and $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Gamma_1$ with $\langle \eta \rangle \geq R$. Put $a^R(\xi, y, \eta) = \Phi^R(\xi, y, \eta) a(y, \eta)$. Then we have $a^R(\xi, y, \eta) \in$ $S^+(R, C_*, 2A + C(\Gamma_1, \Gamma_2), A + C(\Gamma_1, \Gamma_2))$ for $R \ge \max\{4, R_0\}$. Let $u \in \mathcal{C}(\Gamma_0^0)$, and choose $v \in \mathcal{F}_0$ so that $v|_{\Gamma_0^0} = u$. Applying Proposition 1.2 with $a(\xi, y, \eta) = a^R(\eta, y, \xi)$ and noting that $a^{R}(D_{x}, y, D_{y}) = ra(D_{x}, y, D_{y})$, we can see that $a^{R}(D_{x}, y, D_{y})v$ is well-defined and belongs to \mathcal{F}_0 if $R \geq \max\{4, R_0, 2e\sqrt{n}(2A + C(\Gamma_1, \Gamma_2))\}$. Moreover, $a^{R}(D_{x}, y, D_{y})v$ determines an element $(a^{R}(D_{x}, y, D_{y})v)|_{U} \in \mathcal{B}(U)$ and, therefore, an element $\operatorname{sp}((a^R(D_x, y, D_y)v)|_U)|_{\Gamma_0^0} (\equiv (a^R(D_x, y, D_y)v)|_{\Gamma_0^0}) \in \mathcal{C}(\Gamma_0^0)$, where U is a bounded open subset of \mathbb{R}^n satisfying $\Gamma_0^0 \subset U \times S^{n-1}$. It follows from Lemma 2.1 of [7] that $(a^R(D_x, y, D_y)v)|_{\Gamma_0^0}$ does not depend on the choice of $\Phi^R(\xi, y, \eta)$ if $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}(R, B)$ and $R \geq R(A, B, \Gamma_{0}, \Gamma_{1})$, where $R(A, B, \Gamma_{0}, \Gamma_{1}) > 0$. From Lemma 2.2 of [7] it follows that for each conic subset Ω of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ with $\Omega \in \Gamma_0$ there is $R(A, \Omega, \Gamma_0, \Gamma_1, \Gamma_2) > 0$ such that $WF_A(a^R(D_x, y, D_y)w) \cap \Omega = \emptyset$ if $R \geq R(A, \Omega, \Gamma_0, \Gamma_1, \Gamma_2), w \in \mathcal{F}_0$ and $WF_A(w) \cap \Gamma_0 = \emptyset$. Therefore, we can define the operator a(x,D): $\mathcal{C}(\Gamma_0^0) \to \mathcal{C}(\Gamma_0^0)$ by $a(x,D)u = (a^R(D_x,y,D_y)v)|_{\Gamma_0^0}$ for $R \gg 1$, and the operator $a(x, D): \mathcal{C}(\Gamma^0) \to \mathcal{C}(\Gamma^0)$. Moreover, it follows from Lemma 2.2 of [7] that

$$a(x,D)(w|_{\mathcal{U}}) = (a(x,D)w)|_{\mathcal{U}} \quad \text{for } w \in \mathcal{C}(\mathcal{V}),$$

where \mathcal{U} and \mathcal{V} are open subsets of $\mathbb{R}^n \times S^{n-1}$ satisfying $\mathcal{U} \subset \mathcal{V} \subset \Gamma^0$. So we can define $a(x, D): \mathcal{C}_{\Gamma^0} \to \mathcal{C}_{\Gamma^0}$, which is a sheaf homomorphism. Let X be an open subset of \mathbb{R}^n , and assume that $a(x,\xi) \in PS^+(X;R_0,A)$. Similarly, taking $\Gamma = X \times (\mathbb{R}^n \setminus \{0\})$, we can define the operator $a(x,D): \mathcal{B}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$ and the operator $a(x,D): \mathcal{B}(U)/\mathcal{A}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$, where U is a bounded open subset of X and $\mathcal{A}(U)$ denotes the space of all real analytic functions defined in U (see, also, §2.7 of [6]). In doing so, we may choose $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C_*)$ so that supp $\Phi^R \subset \mathbb{R}^n \times X_2 \times \mathbb{R}^n$ and $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times X_1 \times \mathbb{R}^n$, where $\Gamma_j = X_j \times (\mathbb{R}^n \setminus \{0\})$. Moreover, we can define the operator $a(x,D): \mathcal{B}_X \to \mathcal{B}_X/\mathcal{A}_X$ and the operator $a(x,D): \mathcal{B}_X/\mathcal{A}_X \to \mathcal{B}_X/\mathcal{A}_X$, which are sheaf homomorphisms.

Here \mathcal{A}_X denotes the sheaf (of germs) of real analytic functions on X.

Assume that $a(x,\xi) \equiv \sum_{j=0}^{\infty} a_j(x,\xi) \in FS^+(\Gamma; C_0, A)$. Choose $\{\phi_j^R(\xi)\}_{j\in\mathbb{Z}_+} \subset C^{\infty}(\mathbb{R}^n)$ so that $0 \leq \phi_j^R(\xi) \leq 1$,

$$\phi_j^R(\xi) = \begin{cases} 0 & \text{if } \langle \xi \rangle \le 2Rj, \\ 1 & \text{if } \langle \xi \rangle \ge 3Rj, \\ |\partial_{\xi}^{\alpha+\beta} \phi_j^R(\xi)| \le \widehat{C}_{|\beta|} (\widehat{C}/R)^{|\alpha|} \langle \xi \rangle^{-|\beta|} & \text{if } |\alpha| \le 2j. \end{cases}$$

where the $\widehat{C}_{|\beta|}$ and \widehat{C} do not depend on j and R (see §2.2 of [6]). Then it follows from Lemma 2.2.4 of [6] that

$$\tilde{a}(x,\xi) := \sum_{j=0}^{\infty} \phi_j^{R/2}(\xi) a_j(x,\xi) \in PS^+(\Gamma; R, 2A + 3\widehat{C}, A)$$

if $R > C_0$. So we can define $a(x, D)u \in \mathcal{C}(\Gamma^0)$ by $a(x, D)u = \tilde{a}(x, D)u$. Indeed, applying the same argument as in §3.7 of [6] we can see that $a(x, D)u \in \mathcal{C}(\Gamma^0)$ does not depend on the choice of $\{\phi_j^R(\xi)\}$. Similarly, a(x, D) defines a sheaf homomorphism $a(x, D): \mathcal{C}_{\Gamma^0} \to \mathcal{C}_{\Gamma^0}$. If $\Gamma = X \times (\mathbb{R}^n \setminus \{0\})$, then we can also define the operator $a(x, D): \mathcal{B}(U)/\mathcal{A}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$ and the operator $a(x, D): \mathcal{B}_X/\mathcal{A}_X \to \mathcal{B}_X/\mathcal{A}_X$, where U is an open subset satisfying $U \in X$.

Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and let $p(x,\xi) \in FS^+(\Gamma; C_0, A)$, where $A, C_0 \ge 0$.

Theorem 1.4. Let \mathcal{U} and \mathcal{V} be bounded open subsets of Γ^0 in $\mathbb{R}^n \times S^{n-1}$ such that $\mathcal{V} \subseteq \mathcal{U} \subseteq \Gamma^0$. Assume that $WF_A(f) \cap \mathcal{U} = \emptyset$ if $f \in L^2(\mathbb{R}^n)$, $WF_A(f) \cap \partial \mathcal{U} = \emptyset$ and $p(x, D)(f|_{\mathcal{U}}) = 0$ in $\mathcal{C}(\mathcal{U})$. Then $({}^tp)(x, D)$ maps $\mathcal{C}(\check{\mathcal{V}})$ onto $\mathcal{C}(\check{\mathcal{V}})$, i.e., for any $f \in \mathcal{C}(\check{\mathcal{V}})$ there is $u \in \mathcal{C}(\check{\mathcal{V}})$ satisfying $({}^tp)(x, D)u = f$ in $\mathcal{C}(\check{\mathcal{V}})$.

Corollary 1.5 ([7]). Let $z^0 = (x^0, \xi^0) \in \Gamma$, and assume that p(x, D) is analytic microhypoelliptic at z^0 , i.e., there is an open neighborhood \mathcal{U} of $(x^0, \xi^0/|\xi^0|)$ in Γ^0 such that the sheaf homomorphism $p(x, D) : \mathcal{C}_{\mathcal{U}} \to \mathcal{C}_{\mathcal{U}}$ is injective. Then $({}^tp)(x, D)$ is microlocally solvable at $(x^0, -\xi^0)$, i.e., there is an open neighborhood \mathcal{U} of $(x^0, \xi^0/|\xi^0|)$ in Γ^0 such that $({}^tp)(x, D) : \mathcal{C}(\mathcal{U}) \to \mathcal{C}(\mathcal{U})$ is surjective.

Corollary 1.6. Assume that $p(x,\xi) \equiv \sum_{j=0}^{\infty} p_j(x,\xi) \in FS^{m,0}(\Gamma; C_0, A)$, and that $p_0(x,\xi)$ is positively homogeneous of degree m in ξ . Let \mathcal{U} and \mathcal{V} be bounded open subsets of Γ^0 satisfying $\mathcal{V} \subseteq \mathcal{U}$, and assume that there is a continuous vector field $\vartheta : \mathcal{U} \ni z \mapsto \vartheta(z) \in \mathbb{R}^{2n}$ such that $p_0(x,\xi)$ is microhyperbolic with respect to $\vartheta(z)$

at each $z \in \mathcal{U}$. Moreover, we assume that for any $z^0 \in \mathcal{U}$ there is no generalized semi-bicharacteristics $\{z(s)\}_{s\in(-\infty,0]}$ of p_0 starting from z^0 in the negative direction such that $(x(s),\xi(s)/|\xi(s)|) \in \mathcal{U}$ for $s \in (-\infty,0]$, where the parameter s of the curve is chosen so that -s coincides with the arc length from z^0 to z(s) and z(s) = $(x(s),\xi(s))$. For terminology we refer to §4.3 of [6]. Then $({}^tp)(x,D) : \mathcal{C}(\check{\mathcal{V}}) \to \mathcal{C}(\check{\mathcal{V}})$ is surjective.

Corollary 1.7. Let $z^0 = (x^0, \xi^0) \in \Gamma$, and assume that $p(x, \xi) \equiv \sum_{j=0}^{\infty} p_j(x, \xi) \in FS^{m,0}(\Gamma; C_0, A)$, and that $p_0(x, \xi)$ is positively homogeneous of degree m in ξ and microhyperbolic with respect to $(0, e_1) \in \mathbb{R}^{2n}$ at z^0 , where $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^n$. Then $({}^tp)(x, D)$ is microlocally solvable at $(x^0, -\xi^0)$.

Remark. The above corollary was proved in Theorem 5.4.1 of [6] in a different way.

Theorem 1.4 can be proved in the same way as in [7]. We shall give the outline of the proof in the next section. Then Corollary 1.5 easily follows from Theorem 1.4. Combining Theorem 4.3.8 of [6] and Theorem 1.4 one can easily prove Corollary 1.6. Corollary 1.7 is an immediate consequence of Corollary 1.6.

2. Proof of Theorem 1.4

Let Γ_j (j = 1, 2) be open conic subsets of Γ such that $\mathcal{V} \Subset \mathcal{U} \Subset \Gamma_1^0 \Subset \Gamma_2^0 \Subset \Gamma^0$, where $\Gamma_j^0 = \Gamma_j \cap (\mathbb{R}^n \times S^{n-1})$. Choose $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ ($R \ge 4$) so that $0 \le \Phi^R(\xi, y, \eta) \le 1$, supp $\Phi^R \subset \mathbb{R}^n \times \Gamma_2$ and $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Gamma_1$ with $\langle \eta \rangle \ge R$. We put

$$p^{R}(\xi, y, \eta) = \Phi^{R}(\xi, y, \eta) \sum_{j=0}^{\infty} \phi_{j}^{R/2}(\eta) p_{j}(y, \eta),$$

where $R > \max\{4, C_0\}$. Then we have

$$p^{R}(\xi, y, \eta) \in S^{+}(R, C_{*}, 2A + C(\Gamma_{1}, \Gamma_{2}), 2A + 3\widehat{C} + C(\Gamma_{1}, \Gamma_{2})).$$

By definition there is $R(A, \mathcal{U}, \Gamma_1, \Gamma_2) > \max\{4, C_0\}$ such that

(2.1)
$$(p^R(D_x, y, D_y)v)|_{\mathcal{U}} = p(x, D)(v|_{\mathcal{U}}) \quad \text{in } \mathcal{C}(\mathcal{U})$$

if $R \geq R(A, \mathcal{U}, \Gamma_1, \Gamma_2)$ and $v \in \mathcal{F}_0$. Let Ω_j (j = 1, 2) be open conic subset satisfying $\mathcal{V} \Subset \Omega_2^0 \Subset \Omega_1^0 \Subset \mathcal{U}$, and let $\Psi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Omega_2, \Omega_1), C(\Omega_2, \Omega_1))$ ($R \geq C_1^0$

4) satisfy supp $\Psi^R \subset \mathbb{R}^n \times \Omega_1$ and $\Psi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Omega_2$ with $\langle \eta \rangle \geq R$. We assume that $R \geq \max\{R(A, \mathcal{U}, \Gamma_1, \Gamma_2), 25e\sqrt{n}\max\{2A + C(\Gamma_1, \Gamma_2), C(\Omega_2, \Omega_1)\}\}$. For $\varepsilon, \nu \in \mathbb{R}$ we define

$$L^2_{\varepsilon,\nu} := \{ f \in \mathcal{S}'_{-\varepsilon}; \ \langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} f(x) \in L^2(\mathbb{R}^n) \}.$$

 $L^2_{\varepsilon,\nu}$ is a Hilbert space in which the scalar product is given by

$$(f,g)_{L^2_{\varepsilon,\nu}} := (\langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} f, \langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} g)_{L^2},$$

where $(\cdot, \cdot)_{L^2}$ denotes the scalar product of $L^2(\mathbb{R}^n)$. We denote by \mathcal{X} the inductive limit $\varinjlim L^2_{1/j,1/j}$ of the sequence $\{L^2_{1/j,1/j}\}$ (as a locally convex space). Define an operator $T: L^2(\mathbb{R}^n) \to \mathcal{X} \times \mathcal{X}$ as follows;

(i) the domain D(T) of T is given by

$$D(T) = \{ f \in L^{2}(\mathbb{R}^{n}); (1 - \Psi^{R}(D_{x}, y, D_{y})) f \in \mathcal{X} \text{ and } p^{R}(D_{x}, y, D_{y}) f \in \mathcal{X} \},\$$

(ii) $Tf = ((1 - \Psi^{R}(D_{x}, y, D_{y}))f, p^{R}(D_{x}, y, D_{y})f) \text{ for } f \in D(T).$

Let $f \in D(T)$. Then (2.1) gives $p(x, D)(f|_{\mathcal{U}}) = 0$ in $\mathcal{C}(\mathcal{U})$. Moreover, it follows from Lemma 2.1 of [7] that there is $R(\Omega_1, \Omega_2, \mathcal{U}) > 0$ such that $WF_A(f) \cap \partial \mathcal{U} =$ \emptyset if $R \geq R(\Omega_1, \Omega_2, \mathcal{U})$. Therefore, by the assumption of Theorem 1.4 we have $WF_A(f) \cap \mathcal{U} = \emptyset$. From Lemma 2.9 of [7] there are $R_1(\Omega_1, \Omega_2, \mathcal{U}) > 0$ and $\delta(f, \Omega_1, \mathcal{U}) > 0$ such that $\Psi^R(D_x, y, D_y)f \in L^2_{\delta,\nu}$ if $R \geq R_1(\Omega_1, \Omega_2, \mathcal{U}), \nu \in \mathbb{R}$ and $\delta < \min\{1/(2R), \delta(f, \Omega_1, \mathcal{U})\}$. This implies that $f \in \mathcal{X}$, *i.e.*, $D(T) = \mathcal{X}$. We can easily prove that T is a closed operator (see §3 of [7]).

Repeating the same argument as in §3 of [7], we can show that for any $f \in \mathcal{A}'(\mathbb{R}^n)$ there is $u \in \mathcal{F}_0$ satisfying

$$({}^{t}p)(x,D)(u|_{\check{\mathcal{V}}}) = f|_{\check{\mathcal{V}}} \quad \text{in } \mathcal{C}(\check{\mathcal{V}}),$$

which proves Theorem 1.4.

References

- A. A. Albanese, A. Corli and L. Rodino, Hypoellipticity and local solvability in Gevrey classes, Math. Nachr. 242 (2002), 5–16.
- [2] P. D. Cordaro and J.-M. Trépreau, On the solvability of linear partial differential equations in spaces of hyperfunctions, Ark. Mat. 36 (1998), 41–71.

- [3] L. Hörmander, On the existence and the regularity of solutions of linear pseudodifferential equations, Enseign. Math. 17 (1971), 99–163.
- [4] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [5] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
- [6] S. Wakabayashi, Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Math. vol. 1737, Springer, 2000.
- [7] S. Wakabayashi, Remarks on analytic hypoellipticity and local solvability in the space of hyperfunctions, J. Math. Sci. Univ. Tokyo 10 (2003), 89–117.
- [8] A. Yoshikawa, On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 14 (1967), 81–88.