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1. Introduction

Let P be a linear partial differential operator on R™ with C'*° coefficients, and let
2% € R™. In Treves [5] and Yoshikawa [8] it was proved that if P is hypoelliptic at 2,
then there is a neighborhood U of z° satisfying the following; for every f € C*°(U)
there is u € D'(U) such that *Pu = f in U. Here *P denotes the transposed operator
of P. Héormander [3] generalized their results ( see Theorem 1.2.4 of [3]). Recently
Albanese, Corli and Rodino proved in [1] that the result of Treves and Yoshikawa
is still valid in the framework of the Gevrey classes and the spaces of ultradistribu-
tions. Moreover, Cordaro and Trépreau proved in [2] that Hormander’s result can
be generalized in the space of hyperfunctions for partial differential operators with
analytic coefficients. In particular, they proved that P is locally solvable at z° in
the space of hyperfunctions if the coefficients of P are analytic and P is analytic
hypoelliptic at 2°. The aim of this article is to microlocalize their results for a pseu-
dodifferential operator p(z, D), i.e., if U is a bounded open subset of the cosphere
bundle S*R™ ( ~ R" x S"!) over R™ and if p(x, D) satisfies

fELXRY, WFEA(f)nod =0, WFEi(p(x,D)f) NU =0
S
WEL(f)nU =0,

then the transposed operator ‘p(z, D): C(U) — C(U) is surjective, where U = {(z, £);
(x,—€) € U} and C(U) denotes the space of microfunctions on U.
We shall explain briefly about hyperfunctions, microfunctions and pseudodiffer-

ential operators acting on them. For the details we refer to [6]. Let ¢ € R, and



denote (€) = (1+[¢*)1/2, where £ = (&1,-+,&) € R and [¢] = (X7, §[*)/2. We
define
S. = {v(€) € C=(R"); e ¥y(¢) € S},

where § ( = S(R")) denotes the Schwartz space. We introduce the topology to S.
in a natural way. Then the dual space S’ of . can be identified with {v(¢) € D';
e~y () € 8'}, since D (= C°(R™)) is dense in S.. If e > 0, then S. is a dense
subset of S and we can define S. := F8.] ( = F[S.]) ( € S), where F and
F~! denote the Fourier transformation and the inverse Fourier transformation on
S (‘or &), respectively. For example, Flu|(§) = [ e *u(x)dx for u € S, where
x-§ =30 wé for v = (21, ,2,) € R" and § = (&, ,&,) € R™. Let ¢ > 0.
We introduce the topology in S; so that F : S; — S, is homeomorphic. Denote by S,
the dual space of S.. Since S. is dense in S, we can regard S’ as a subspace of S.. We
can define the transposed operators *F and *{F~! of F and F~!, which map S’ and §;
onto g’é and 8!, respectively. Since S.cC 3\; (C D), wecan defineS_. = tf_l[g,g],
and introduce the topology in S_. so that *F~!: g_g — S_¢ is homeomorphic. S’
denotes the dual space of S_.. We note that S’, = F[§'.] C 8' C 8. and F = 'F
on &. So we also represent ‘F by F. Let A(C") be the space of entire analytic
functions on C", and let K be a compact subset of C". We denote by A'(K) the
space of analytic functionals carried by K, i.e., u € A(K) if and only if (i) u :
A(C") 3 ¢ — u(p) € C is a linear functional, and (ii) for any neighborhood w of
K in C" there is C,, > 0 such that |u(¢)| < C, sup,c, |¢(2)| for ¢ € A(C"). Define

A(R") := Upern A (K), Soo := (Neer Ses €0 := (ong S—c and Fo := (.., S.. Here

A € B means that the closure A of A is compact and included in the interior 23 of
B. We note that F~C5(R")] C S and that S, is dense in S. and S for € € R.
For u € A'(R") we can define the Fourier transform u(&) of u by

a(€) (= Flul(€)) = us(e™*),

where 2 - & = Y7 ;€ for 2 = (21,-++,2,) € C" and § = (&, ,§,) € R". By
definition we have 4(§) € (..o S-- ( = F[&)). Therefore, we can regard A'(R")
as a subspace of &, i.e., A'(R") C & C Fo, ( see Lemma 1.1.2 of [6]). The space
Fo plays an important role in our treatment as the space &’ does in the framework
of C'*° and distributions. For a bounded open subset X of R"™ we define the space

B(X) of hyperfunctions in X by

B(X) == A(X)/A(0X),



where X denotes the boundary of X.
Let u € Fy. We define

H(uw) (2, Tne1) = (sg0 Znga) expl—=|zna [(D)]u(z)/2
(= (sen Znr1)F " [exp[—|zara|()]a(€)](2)/2 € S'(R™))

for x,41 € R\ {0}, and

supp u = ﬂ{F ; I is a closed subset of R" and there is a real
analytic function U(x,z,,1) in R™™\ F x {0}
such that U(z, z,41) = H(u)(x, xp11) for x,11 # 0}.

We note that supp w coincides with the support of u as a distribution if u € &’ ( see
Lemma 1.2.2 of [6]). Let K be a compact subset of R". Then u € A'(K) if and only if
w is an analytic functional and supp u C K ( see Proposition 1.2.6 of [6]). It follows
from Theorem 1.3.3 of [6] that there is v € A’(K) satisfying supp (u—v)NK C 0K,
and if v = vy, vy are such functionals in A’(K) we have supp (v; — ve) C 0K.
Therefore, we can define the restriction map from Fy to A'(K)/A'(0K) ( = B([o( )
which is surjective. For 2° € R™ we say that u is analytic at 2° if H(u)(z, z,41) can
be continued analytically from R" x (0, c0) to a neighborhood of (z°,0) in R"™!. We
define

sing supp u := {x € R"; u is not analytic at z}.

Next let u € B(X), where X is a bounded open subset of R™. Then there is
v € A'(X) such that the residue class of v is u in B(X). We define

supp w :=supp vN X, sing supp u := sing supp v N X.

These definitions do not depend on the choice of v. So we say that u is analytic at
20 if 2° ¢ sing supp u. Let X be an open subset of R". We also define B(X) ( see
Definition 1.4.5 of [6]). For open subsets U and V of X with V' C U the restriction
map pY : B(U) 3 u — uly € B(V) can be defined so that pf is the identity mapping
and py, o p¥ = pY, for open subsets U, V and W of X with W c V C U. By
definition we can also define the restriction map from Fy to B(X), and we denote
by v|x the restriction of v € Fy to B(X) (or on X). We define the presheaf Bx by
associating B(U) to every open subset U of X. By definition By is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.



Definition 1.1. (i) Let u € Fy. The analytic wave front set W F4(u) C T*R™\ 0
(~ R" x (R™\ {0})) is defined as follows: (z°,&°) € T*R™\ 0 does not belong
to WE4(u) if there are a conic neighborhood T" of £, Ry > 0 and {¢®(&)}r>r, C
C>(R") such that ¢®(¢) = 1 in T' N {(¢) > R},

1) 9¢+2g"(©)] < Ciay(C/R)*()

if (€) > R|a|, and ¢®(D)u ( = Fg"(&)a(¢)]) is analytic at 2° for R > Ry, where
C' is a positive constant independent of R.

(ii) Let X be an open subset of R”, and let u € B(X) and (2°,£°) € T*X \ 0
(~ X x (R"\ {0})). Then we say that (z°, &%) & WF4(u) ( C T*X \ 0) if there are
a bounded open neighborhood U of 2° and v € A'(U) such that v|y = u|y in B(U)
and (2°,£%) ¢ WF4(v)

Remark. (1) W Fa(u) for u € B(X) is well-defined. Indeed, it follows from The-
orem 2.6.5 in [6] that for any v € A'(R™) with 2° ¢ supp v there is R; > 0 such
that ¢"(D)v is analytic at 2° if R > Ry, where {g"(¢)}r>r, is a family of symbols
satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of [6].
(iii) From Theorem 3.1.6 in [6] and the results in [4] it follows that our definition
of WF4(u) coincides with the usual definition.

Let U be an open subset of the cosphere bundle S*R"™ over R"™, which is identified
with R™ x S"~1. We define

CU) = B(R")/{u € B(R"); WFa(u) NU = (}.
Since B is a flabby sheaf, we have
CU)=BU)/{ue BU); WFa(u)nU =0}

if U is an open subset of R” and Y C U x S™ . Elements of C(U) are called
microfunctions on Y. We can define the restriction map C(U) > u — uly € C(V)
for open subsets U and V of R"® x 8"~ with ¥V C Y. Let © be an open subset of
R"™ x S"~!. We define the presheaf Cq on Q associating C(U) to every open subset
U of Q2. Then Cq is a flabby sheaf ( see, e.g., Theorem 3.6.1 of [6]). For each open
subset U of R™ we define the mapping sp: B(U) — C(U x S™!) such that the residue
class in C(U x S™ 1) of u € B(U) is equal to sp(u). We also write uly = sp(u)ly for
u € B(U) and v|y = sp(v|y)|u for v € Fy, where U is an open subset of U x S™~1.



Assume that a(&,y,n) € C°(R"™ x R" x R™) and there are positive constants Cj
( k> 0) such that

(1.2) 02 DI Paa(E, y, )l
< Claps i p (A/R)PHE ™y ™2 exp[51(€) + 65(n)]

if o, 3, 6,7 € (Z1)", & y,n € R" and () > R|B|, where D, = —id,, R > 1, A >0,
my, mag, 01,00 € R and Z, = N U {0}. It should be remarked that some functions
satisfying the estimates (1.2) with m; = ms = 0 and §; = J, = 0 are given in
Proposition 2.2.3 of [6]. We define pseudodifferential operators a(D,,y, D,) and
"a(Dy,y, D,) by

o(Ds.y. Dyule) = (2m) 5 [ [ ([ ateynitn) dn) o] o)

and "a(D,,y, Dy)u = b(D,,y,D,)u for u € Sy, respectively, where b(&,y,n) =
a(n,y,&). Applying the same argument as in the proof of Theorem 2.3.3 of [6] we

have the following

Proposition 1.2. a(D,,y,D,) can be extended to a continuous linear operator

from S, to S, and from S’ to S'_ , respectively, if

—£17

v>1, €9 — 0o :V(€1+51)+,

(1.3)
e1+01 <1/R, R>eynvA/(v—1),

where ¢y = max{c,0}. Similarly, "a(D,,y, D,) can be extended to a continuous

linear operator from S_., to S_., and from S! to S.,, respectively, if (1.3) is valid.

€27

Remark. (i) We had a slight improvement of the remark of Theorem 2.3.3 of
6], i.e., we can take Ry(S,T,v) = ey/nv/(v — 1) there instead of Ry(S,T,v) =
env/(v—1)ifn=n"=n" S(y,§) =—y-& and T(y,n) = y-n. This is reflected in
the condition (1.3).

(i) Since for any open sets X; ( j = 1,2) with X; € X, one can construct a
symbol a(&,y,n) satisfying (1.2) with m; = me = 0 and §; = J, = 0, supp a C
R"x Xo xR™ and a(&,y,n) = 1 for (§,y,n) € R" x X; x R™, one can use the operator
a(D,y, D,) instead of cut-off functions.

Definition 1.3. Let I" be an open conic subset of R™ x (R \ {0}), and let X be

an open subset of R™. Moreover, let Ry > 0.



(i) Let Ry > 1, m,0 € Rand A, B > 0, and let a(z,§) € C°(R" x R™). We say
that a(z,£) € S™(Ry, A, B) if a(xz, £) satisfies

‘QEZI§)< | < Clar(A/Ro)*N (B Ry) P (g) mH1PIm I8l 2@)

for any o, &, (3,8 € (Z4)" and (z,&) € R* x R™ with (&) > Ry(|a| + |8]), where
aggg (x,€&) = ag‘Dfa(x,f’) and the C) are independent of o and 3. We also write
S™(Ry, A, B) = S™%(Ry, A, B) and S™(Ry, A) = S™(Ry, A, A). We define ST(Ry,
A, B) = Nso0 S**(Ro, A, B).

(i) Let Ry > 1, m;,0; e R (j=1,2), A, >0 (j =1,2) and B > 0, and let
a(é,y,m) € C¥(R™ x R™ x R"). We say that a(¢,y,n) € S™m2902(Ry Ay, B, A)
if a(&,y,n) satisfies

05 2Dy 0 al€, )| < Cogyygaiegg (A Ro) ™ (B/Ro) "7
x (Ao Ro) 7)1 13 g 1 excpl ) + )]

for any @, @, 81, 52, 5,77 € (Zo )", (€,9,7) € R* xR" xR" with (€) > Ro(|a|+|3"]
and (n) > Ro(|v|+]5?%]). We also write S™1:m2:01:92( Ry A) = Smum201.02( Ry A A A).
Similarly, we define S™(Ry, A1, B, As) = (5= 5" (Ro, A1, B, As).

(iii) Let A, B > 0, and let a(z, &) € C*°(I"). We say that a(z, &) € PST(I'; Ro, A,
B) if a(z, &) satisfies

af5 ™ (@, )| < Clas A" B jalt8]!(¢) 71 -H81e®

for any o, &,0 € (Z4)", (2,6) € T with |§] > 1 and (§) > Ry|la| and § > 0.
We also write PST(T'; Ry, A) = PS™(T'; Ry, A, A). Moreover, we say that a(z,§) €
PST(X; Ry, A, B) if a(z, &) € C®°(X xR") and a(x,&) € PSHT(X x (R*\{0}); Ry, A
B).

(iv) Let m,6 € R and A, Cy > 0, and let {a;(2,&)}jez, € [[;ez, C
that a(z,&) = {a;(x, &) }jez, € FS™(T;Co, A) if a(z, ) satisfies

057 (2, )] < CCFAH t|all 31 m—~1%1e%

for any j € Z4, a, 8 € (Z4)" and (z,§) € I' with |{] > 1, where C is independent
of a, § and j. We define FST([';Co, A) := Nso0 FS*(T;Co, A). We also write
a(z,§) = >y a;(x,§) formally. Moreover, we write F'S*(X;Cy, A) = FST(X x
(R"\ {0}); Co, A).

(v) For a(z,&) = 372, aj(x,§) € FST(I';Cy, A) we define the symbol (‘a)(z, )
by

*(T). We say

a)(w,€) =Y bi(2,8), b2, = > (—=DFlas) (z,—€)/al.

J=0 k+|al=j



Remark. Tt is easy to see that (‘a)(z, €) € FST(I';max{Cy, 4nA%}, 2A). Moreover,
we have (‘(*a))(x, &) = a(x, §).

Let I" be an open conic subset of R™ x (R™\ {0}), and assume that a(z,§) €
PS*(T; Ry, A), where A > 0 and Ry > 1. Let I'; (0 < j < 2) be open conic
subsets of T' such that Ty @ 'y € I'y € I, and write ' = ' N (R™ x S"71), where
[y € T implies that I'Y € T'. Tt follows from Proposition 2.2.3 of [6] that there
are symbols ®%(¢ y,n) € S*O00(R C,,C(T,Ty),C(T'1,Ty)) ( R > 4) satisfying
0 < ®R(E y,m) <1, supp ¥ C R™ x I'y and ®E(E,y,n) = 1 for (&,y,mn) € R* x Ty
with (n) > R. Put of'(¢,y,m) = ®8(E,y,n)a(y,n). Then we have a®(&,y,n) €
ST(R,C.,2A + C(T1,T3), A+ C(T1,Ty)) for R > max{4, Ro}. Let u € C(I'}), and
choose v € Fy so that v|pg = u. Applying Proposition 1.2 with a(§,y,n) = a®(n,y, &)
and noting that «®(D,,y, D,) = "a(D.,y, D,), we can see that a®(D,,y, D,)v is
well-defined and belongs to Fy if R > max{4, Ry, 2ey/n(2A+C(I'1,T5))}. Moreover,
af*(D,,y, D,)v determines an element (a®(D,,y, D,)v)|y € B(U) and, therefore, an
element sp((a" (D, y, Dy)v)|v)lre (= (a"(Da,y, Dy)v)|rg) € C(T7), where U is a
bounded open subset of R™ satisfying ') € U x S"~!. Tt follows from Lemma
2.1 of [7] that (a™(D,,y, Dy)v)|rg does not depend on the choice of ®(&,y,n) if
df(¢ y,m) € SO%00(R B) and R > R(A, B,Ty,T), where R(A, B,Ty,I';) > 0.
From Lemma 2.2 of [7] it follows that for each conic subset Q2 of R™ x (R™\ {0}) with
Q €Iy there is R(A,Q,Ty,I'1,T) > 0 such that WF4(a®(D,,y, D,)w) NQ = 0 if
R > R(A,Q,T0,T'1,Ty), w € Fy and WFy(w) N Ty = (). Therefore, we can define
the operator a(x, D): C(I')) — C(I'9) by a(x, D)u = (af*(D,, v, Dy)v)|po for R > 1,
and the operator a(z, D): C(I'°) — C(I'Y). Moreover, it follows from Lemma 2.2 of
[7] that

a(x, D)(wly) = (a(z, D)w)|y for w € C(V),

where U and V are open subsets of R x S"! satisfyingd € V C I'°. So we can define
a(x, D): Cro — Cro, which is a sheaf homomorphism. Let X be an open subset of
R", and assume that a(z,&) € PST(X; Ry, A). Similarly, taking I' = X x (R™\ {0}),
we can define the operator a(z, D): B(U) — B(U)/A(U) and the operator a(x, D):
B(U)/A{U) — B(U)/A(U), where U is a bounded open subset of X and A(U)
denotes the space of all real analytic functions defined in U ( see, also, §2.7 of
[6]). In doing so, we may choose ®F(¢,y,n) € S*009(R C,,C(I'},Ty),C.) so that
supp @ C R" x Xy x R™ and ®7(¢,y,n) = 1 for (£,y,17) € R" x X; x R", where
I'; = X; x (R"\ {0}). Moreover, we can define the operator a(z, D): Bx — Bx/Ax
and the operator a(x,D): Bx/Ax — Bx/Ax, which are sheaf homomorphisms.



Here Ax denotes the sheaf ( of germs) of real analytic functions on X.
Assume that a(z,€) = 5 a;(,€) € FSH(T; Co, A). Choose {%(6)) ez, ©
C>®(R™) so that 0 < ¢f(£) <1,

0 if (&) <2Rj,
1 if (§) > 3Ry,
95705 (E)| < Clg(C/R)NE)™ i Jo| < 25,

¢5(€) =

where the éw and C do not depend on j and R ( see §2.2 of [6]). Then it follows
from Lemma 2.2.4 of [6] that

=Y ¢/ (&)a;(x,6) € PSH(T; R,2A+3C, A)
7=0

if R > Cy. So we can define a(z, D)u € C(I"°) by a(z, D)u = a(z, D)u. Indeed, ap-
plying the same argument as in §3.7 of [6] we can see that a(z, D)u € C(T"°) does not
depend on the choice of {¢F(£)}. Similarly, a(z, D) defines a sheaf homomorphism
a(x,D): Cro — Cro. If T' = X x (R™\ {0}), then we can also define the operator
a(z,D): B(U)/AU) — B(U)/A(U) and the operator a(z, D): Bx/Ax — Bx/Ax,
where U is an open subset satisfying U € X.

Let ' be an open conic subset of R” x (R™\ {0}), and let p(z,§) € FST(T; Cy, A),
where A, Cy > 0.

Theorem 1.4. Let U and V be bounded open subsets of IO in R™ x S"~! such
that V @ U € T°. Assume that WEA(f)NU =0 if f € L*R™), WEA(f) NOU =
and p(z, D)(flu) = 0 in C( ). Then (*p)(z, D) maps C(V) onto C(V), i.c., for any
f €C(V) there is u € C(V) satisfying (*p)(x, D)u = f in C(V).

Corollary 1.5 ([7]). Let 2° = (2°,€°) € T, and assume that p(z, D) is ana-
lytic microhypoelliptic at 2°, i.e., there is an open neighborhood U of (x°,£°/1£%))
in TO such that the sheaf homomorphism p(x,D) : Cy — Cy is injective. Then
(*p)(x, D) is microlocally solvable at (z°,—£°), i.e., there is an open neighborhood U
of (2°,£°/|€°]) in T° such that (*p)(z, D) : C(U) — C(U) is surjective.

Corollary 1.6. Assume that p(x,§) = Z;‘;O pi(x, &) € FS™(T'; Cy, A), and that
po(z, &) is positively homogeneous of degree m in . Let U and V be bounded open
subsets of T satisfying V € U, and assume that there is a continuous vector field
VU Dz~ I(2) € R*™ such that po(x, &) is microhyperbolic with respect to 9(z)



at each z € U. Moreover, we assume that for any z° € U there is no generalized

0

semi-bicharacteristics {2(8)}se(—oo,0 Of Do starting from 2° in the negative direction

such that (z(s),&(s)/|€(s)]) € U for s € (—o0,0], where the parameter s of the
curve is chosen so that —s coincides with the arc length from 2° to z(s) and z(s) =
(z(s),&(s)). For terminology we refer to §4.3 of [6]. Then (*p)(z, D) : C(V) — C(V)

18 surjective.

Corollary 1.7. Let 2° = (2°,£%) € T, and assume that p(x,§) = 372 pi(2,§) €
FS™OT; Cy, A), and that po(z,€) is positively homogeneous of degree m in & and
microhyperbolic with respect to (0,e;) € R* at 29, where e; = (1,0,---,0) € R™.
Then (*p)(x, D) is microlocally solvable at (x°, —£°).

Remark. The above corollary was proved in Theorem 5.4.1 of [6] in a different

way.

Theorem 1.4 can be proved in the same way as in [7]. We shall give the outline
of the proof in the next section. Then Corollary 1.5 easily follows from Theorem 1.4.
Combining Theorem 4.3.8 of [6] and Theorem 1.4 one can easily prove Corollary 1.6.

Corollary 1.7 is an immediate consequence of Corollary 1.6.

2. Proof of Theorem 1.4

Let T'; ( j = 1,2) be open conic subsets of I such that V e e I € T € I'?,
where I') = I'; N (R™ x S*7'). Choose ®%(¢,y,n) € S***(R,C,,C(T'1,Ty),C(Ty,
I'y)) ( R >4) so that 0 < ®R(¢,y,n) < 1, supp ®F C R x 'y and (€, y,n) =1
for (&,y,n) € R™ x I'y with (n) > R. We put

P& ) = OR(E ) Y o P (m)ps(y.m),
7=0

where R > max{4,Cy}. Then we have

P& y.m) € ST(R,C., 24+ C(T1,T5),2A + 3C + C(I'y,T)).
By definition there is R(A,U,T'1,'y) > max{4, Cy} such that
(2.1) (0""(Dsy, Dy)v)u = plw, D)(vly) n CU)

if R > R(A,U,T'1,I'y) and v € Fy. Let ©; (j = 1,2) be open conic subset satisfying
Ve e e, and let UE(E, y,n) € SUOOR, C,,C(Q,Q21),C(Q2,)) ( R >

9



4) satisfy supp W C R"xQy and W (€, y,m) = 1for (€,y,1) € R"xQy with (n) > R.
We assume that R > max{R(A,U,T1,Ts),25ey/nmax{2A+C(T'1,Ts), C(Qa,21)}}.
For €,v € R we define

Liy ={feS’; (x>”ea<D>f(x) € L*(R™)}.
Lgyy is a Hilbert space in which the scalar product is given by

(f?g)Lg,,, = <<x>V66<D>f’ <x>V€E<D>g)L27

where (-, )2 denotes the scalar product of L*(R™). We denote by X the inductive
limit hLQL% sj1/; of the sequence {L? ey j} ( as a locally convex space). Define an
operator T': L?*(R") — X x X as follows;

(i) the domain D(T') of T is given by
D(T) ={f € L*(R"); (1 - ¥*(Dy,y,Dy))f € X and p™(Dy,y, D,)f € X},

(i) Tf = ((1 = 9Dy, y, D)) f,p"(Ds,y, Dy) f) for f € D(T).
Let f € D(T'). Then (2.1) gives p(xz, D)(f|y) = 0 in C(U). Moreover, it follows
from Lemma 2.1 of [7] that there is R(£2y,Qs,U) > 0 such that WE4(f) NoU =
0 if R > R(Q4,Q,U). Therefore, by the assumption of Theorem 1.4 we have
WFEA(f) "U = (. From Lemma 2.9 of [7] there are Ri(2y,Qs,U) > 0 and
0(f,Qu,U) > 0 such that W¥(D,,y,D,)f € L3, if R > Ri(Q, D, U), v € R
and 0 < min{1/(2R),d(f,,U)}. This implies that f € X, i.e., D(T) = X. We
can easily prove that 7' is a closed operator ( see §3 of [7]).

Repeating the same argument as in §3 of [7], we can show that for any f € A'(R")
there is u € Fy satisfying

('"P)(z, D)(uly) = fly inC(V),

which proves Theorem 1.4.
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