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1. Introduction

The composition formula was given in§18.5 of Ḧormander [1] for classical
pseudo-differential operators whose symbols belong to symbol classes defined by
Hörmander metrics and Ḧormander weights. The formula was proved via results
of the Weyl calculus. However, there is a loss in doing so ( see Example 8 at the
end of§2). In this note we will give the composition formula for classical pseudo-
differential operators, applying directly the arguments in§18.4 of [1]. Another
aim of this note is to make the proofs in§18.4 of [1] clearly understandable.

Let g j ( j = 1,2) be σ temperate Riemannian metrics inR2n. Then theg j

satisfy the following:

(i) Theg j are slowly varying,i.e., there are positive constantsc(g j) andC0(g j)
( j = 1,2) such that

g j X+Y(t) ≤C0(g j)g j X(t) for anyt ∈ R2n(1)

if X,Y ∈ R2n andg j X(Y) ≤ c(g j).

(ii) There areC1(g j) > 0 andN(g j) such that

g j X(t) ≤C1(g j)g jY(t)(1+gσ
j X(X−Y))N(g j ) for X,Y, t ∈ R2n,

where

gσ
j X(Y) = sup

t∈R2n\{0}
σ(Y, t)2/g j X(t),

σ((x,ξ ),(y,η)) = ⟨y,ξ ⟩−⟨x,η⟩,

⟨y,ξ ⟩ =
n

∑
j=1

y jξ j for y = (y1, · · · ,yn) andξ = (ξ1, · · · .ξn).

Let mj(X) ( j = 1,2) beσ ,g j temperate weights,i.e., let mj(X) ( j = 1,2)
satisfy the following:
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(i) The mj(X) are g j continuous,i.e., there are positive constantsc(mj) and
C(mj) ( j = 1,2) such that

(2) C(mj)−1 ≤ mj(X +Y)/mj(X) ≤C(mj)

if X,Y ∈ R2n andg j X(Y) ≤ c(mj).

(ii) There areC1(mj) > 0 andN(mj) such that

mj(X) ≤C1(mj)mj(Y)(1+gσ
j X(X−Y))N(mj ) for X,Y ∈ R2n.

Put
g = (g1 +g2)/2.

Theng is slowly varying. We assume that the following conditions (A-1) – (A-3)
are satisfied:

(A-1) There areC(g1,g2) > 0 andN(g1,g2) such that

gσ
1X(t) ≤C(g1,g2)gσ

1Y(t)(1+gσ
2X(X−Y))N(g1,g2),

gσ
2X(t) ≤C(g1,g2)gσ

2Y(t)(1+gσ
1X(X−Y))N(g1,g2) for X,Y, t ∈ R2n.

(A-2) There areC > 0 andN such that

m1(X) ≤Cm1(Y)(1+gσ
2Y(X−Y))N,

m2(X) ≤Cm2(Y)(1+gσ
1Y(X−Y))N for X,Y ∈ R2n.

(A-3) There isc > 0 such that

g1X(x,ξ ) ≥ cg1X(0,ξ ), g2X(x,ξ ) ≥ cg2X(x,0) for X,(x,ξ ) ∈ R2n.

By (A-1) g is σ temperate ( see Lemma 4 below). Moreover, themj areσ ,g
temperate (see Lemma 4 below). Define

m(x) = m1(X)m2(X), M(X,Y) = m1(X)m2(Y),
G(X,Y)(s, t) = g1X(s)+g2Y(t),

g0(X,Y)(y,ξ ) = G(X,Y)(0,ξ ,y,0)(= g1X(0,ξ )+g2Y(y,0))

for X,Y,s, t,(y,ξ ) ∈ R2n. Thenm(X) is σ ,g temperate andG is a slowly varying
metric onR4n, i.e., there are positive constantsc0 andC0 such that

(3) C−1
0 ≤ G(X+X1,Y+Y1) ≤C0G(X,Y)
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if X,Y,X1,Y1 ∈ R2n andG(X,Y)(X1,Y1) ≤ c0. We may assume that

c0 ≤ c(mj) ( j = 1,2).

Let a j(x,ξ ) ∈ S(mj ,g j) ( j = 1,2), i.e.,

∥a j∥k ≡ sup
X∈R2n

|a j |
g j
k (X)/mj(X) < ∞ for anyk∈ Z+(≡ N∪{0}),

where foru∈C∞(R2n)

|u|g j
k (X) = sup

t1,··· ,tk∈R2n
|u(k)(X; t1, · · · , tk)|/

k

∏
l=1

g j X(tl )1/2,

u(k)(X; t1, · · · , tk) = (∂ k/∂s1 · · ·∂sk)u(X +s1t1 + · · ·+sktk)|s1=···=sk=0.

Note thatS(mj ,g j) is a Frech́et space with a family of semi-norms{∥·∥k}k=0,1,2,···.
We also note that| · |g j

k is invariant under a linear change of coordinate systems in
R2n ( the choice of a basis ofR2n). Put

b(x,ξ ) = a1(x,ξ )◦a2(x,ξ ),

wherea1(x,ξ )◦a2(x,ξ ) = σ(a1(x,D)a2(x,D)) andσ(a(x,D)) = a(x,ξ ). If a j ∈
S (R2n) ( j = 1,2), then

b(x,ξ ) = (2π)−n
∫

e−i⟨y,η⟩a1(x,ξ +η)a2(x+y,ξ )dydη(4)

= eiA(Dξ ,Dy)(a1(x,ξ )a2(y,η))|y=x,η=ξ ,

whereA(Dξ ,Dy) = ∑n
j=1Dy j Dξ j

, Dy j = −i∂/∂y j andDξ j
= −i∂/∂ξ j . Indeed, if

χ ∈C∞
0 (Rn) satisfiesχ(0) = 1, then∫
f̂ (ỹ, η̃)F−1

(y,η)[e
−i⟨y,η⟩χ(εy)χ(εη)](ỹ, η̃)dỹdη̃

=
∫

f (y,η)e−i⟨y,η⟩χ(εy)χ(εη)dydη →
∫

f (y,η))e−i⟨y,η⟩dydη asε ↓ 0

for f ∈S (R2n), where f̂ (ỹ, η̃) denotes the Fourier transform off andF−1
(y,η)[ f (y,

η)](ỹ, η̃) denotes the inverse Fourier transform off . On the other hand, we have

F−1
(y,η)[e

−i⟨y,η⟩χ(εy)χ(εη)](ỹ, η̃) → (2π)−nei⟨ỹ,η̃⟩ asε ↓ 0.

Since there isC(χ) > 0 such that

| f̂ (ỹ, η̃)F−1
(y,η)[e

−i⟨y,η⟩χ(εy)χ(εη)](ỹ, η̃)| ≤C(χ)| f̂ (ỹ, η̃)|,
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Lebesgue’s convergence theorem gives∫
e−i⟨y,η⟩ f (y,η)dydη = (2π)−n

∫
ei⟨ỹ,η̃⟩ f̂ (ỹ, η̃)dỹdη̃ for f ∈ S (R2n).

So we have the second equality of (4). Define a 2n×2n matrix A by

A =
1
2

(
0 In
In 0

)
,

whereIn denotes then×n identity matrix. Noting that

A

(
ỹ
ξ̃

)
=

1
2

(
ξ̃
ỹ

)
,

we define

gA
0(X,Y)(y,ξ ) = sup

g0(X,Y)(AX̃)<1

⟨X̃,(y,ξ )⟩2

(
= sup

g0(X,Y)(ξ̃/2,ỹ/2)<1

⟨(ỹ, ξ̃ ),(y,ξ )⟩2
)

for X,Y,(y,ξ ) ∈ R2n.

It is easy to see that

gA
0(X,Y)(y,ξ ) = 4gσ

0(X,Y)(y,ξ )
(
= 4 sup

t∈R2n\{0}
σ((y,ξ ), t)2/g0(X,Y)(t)

)
.

We assume that

(A-4) g0(X,X) ≤ gA
0(X,X) for anyX ∈ R2n.

Put for l ∈ Z+ and(x,ξ ) ∈ R2n

(5) Rl (x,ξ ) = b(x,ξ )− ∑
|α|<l

a(α)
1 (x,ξ )a2(β )(x,ξ )/α!,

wherea(α)
(β )(x,ξ ) = ∂ α

ξ Dβ
x a(x,ξ ). Then we have the following theorem which

corresponds to Theorem 18.4.11 in [1].

Theorem 1. Let{a j,k}k=1,2,3,··· ( j = 1,2) be sequences in C∞0 (R2n) such that
the{a j,k}k=1,2,3,··· are bounded in S(mj ,g j) and aj,k → a j in C∞(R2n) as k→ ∞.
Then b= a1◦a2 is well-defined and belongs to S(m,g) and{a1,k ◦a2,k}k=1,2,··· is
a bounded subset of S(m,g) and satisfies

a1,k ◦a2,k → b in C∞(R2n) as k→ ∞.
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Moreover, we have Rl (x,ξ ) ∈ S(mhl ,g) for l ∈ Z+, where

h(X) =
(

sup
t∈R2n\{0}

g0(X,X)(t)

gA
0(X,X)(t)

)1/2

and Rl is defined by(5).

Remark.Let T: S(M,G) → S(m,g) be a linear map. We say thatT is weakly
continuous if for any bounded subsetB of S(M,G) TB is bounded inS(m,g) and
T|B: B→ TB is continuous with respect toC∞ topologies ofB andTB. From the
proof of Theorem 1 the linear map

T : S(M,G)∩C∞
0 (R4n) → S(m,g) :

u(x,ξ ,y,η) 7→ (exp(i(A(Dξ ,Dy))u)(x,ξ ,x,ξ )

can be extended uniquely to the weakly continuous linear mapT̃: S(M,G) →
S(m,g).

2. Proof of Theorem 1

Let ε ∈ (0,1), and put

P ={{(Xν ,Yν)}ν∈A ⊂ R4n; A⊂ N and

G(Xν ,Yν )(Xν −Xµ ,Yν −Yµ) ≥ c0ε/C0 for ν ,µ ∈ A with ν ̸= µ},

wherec0 andC0 are the constants in (3).P becomes a partially ordered set by the
set inclusion relation and every linearly ordered subset ofP has an upper bound
in P. Using Zorn’s lemma we can prove the following

Lemma 2(Lemma 18.4.4 in [1]). For anyε ∈ (0,1) there are{(Xν ,Yν)}∞
ν=1 ⊂

R4n and Nε ∈ N such that

R4n =
∞∪

ν=1

BR
ν if c0ε < R2,

Nε+1∩
j=1

BR
ν j

= /0 if R2 < c0 and1≤ ν1 < ν2 < · · · < νNε+1,

where BR
ν = {(X,Y) ∈ R4n : G(Xν ,Yν )(X−Xν ,Y−Yν) < R2} and c0 is the constant

in (3). Moreover, if c0ε < R2 < c0, then there areΦν ∈ C∞
0 (BR

ν) ( ν ∈ N) and
Ck,ε > 0 ( k∈ Z+) satisfying∑∞

ν=1Φν = 1 and

|Φν |Gk (X,Y) ≤Ck,ε for (X,Y) ∈ R4n andν ∈ N.
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Note thatM(X,Y) is G continuous. Letu(X,Y) ∈ S(M,G)∩C∞
0 (R4n). Put

uν = Φνu. Then we haveu = ∑∞
ν=1uν . Fix ν ∈ N, and put

K = {(X,Y) ∈ R4n; G(Xν ,Yν )(X,Y) < 1}.

By making a linear change of coordinate systems inR2n ( a choice of a basis
of R2n) we may assume thatg0(Xν ,Yν )(y,ξ ) = |y|2 + |ξ |2. The assumption (A-3)
implies that

|y|2 + |ξ |2 < 1/c if (x,η) ∈ R2n and(x,ξ ,y,η) ∈ K.

Therefore, it follows from Sobolev’s lemma and Parseval’s formula that for each
k∈ Z+ there areC,C′ > 0 such that∣∣∣exp(iA(Dξ ,Dy))v(x,ξ ,y,η)− ∑

j<k

(iA(Dξ ,Dy)) jv(x,ξ ,y,η)/ j!
∣∣∣

≤C sup
α∈(Z+)2n, |α|≤n+1

∥((Dy,Dξ )αA(Dξ ,Dy)kv)(x, ·, ·,η)/k!∥L2(R2n)

≤C′ sup
j≤n+1

sup
(x,ξ 1,y1,η)∈K

|(A(Dξ ,Dy)kv)(x, ·, ·,η)|g0(Xν ,Yν )
j (y1,ξ 1)/k!

for v∈C∞
0 (K) and(x,ξ ,y,η) ∈ R4n, since

|ew− ∑
j<k

w j/ j!| ≤ |w|k/k! if Rew≤ 0

and the volume of{(y,ξ ) ∈ R2n; (x,ξ ,y,η) ∈ K} is less than or equal toc2nc−n

for each(x,η) ∈ R2n, wherec2n is a positive constant depending only on 2n. So,
under any choice of linear coordinate systems inR2n we have∣∣∣exp(iA(Dξ ,Dy))v(x,ξ ,y,η)− ∑

j<k

(iA(Dξ ,Dy)) jv(x,ξ ,y,η)/ j!
∣∣∣(6)

≤Ck sup
j≤n+1

sup
(y1,ξ 1)

|(A(Dξ ,Dy)kv)(x, ·, ·,η)|g0(Xν ,Yν )
j (y1,ξ 1)

for k∈ Z+ andv∈C∞
0 (K). Let R> 1, and let(x̂, ξ̂ , ŷ, η̂) ∈ R4n. First suppose that

(x̂, ξ̂ , ŷ, η̂) /∈ RK, whereK denotes the closure ofK in R4n. Define

GA
(X,Y)(x,ξ ,y,η) = sup

g0(X,Y)(ξ̃/2,ỹ/2)<1

⟨(x̃, ξ̃ , ỹ, η̃),(x,ξ ,y,η)⟩2

for (x,ξ ),(y,η),X,Y ∈ R2n. By definition we have

GA
(X,Y)(x,ξ ,y,η) = ∞ if (x,η) ̸= (0,0),
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GA
(X,Y)(0,ξ ,y,0) = gA

0(X,Y)(y,ξ ).

Then there isa > 0 satisfying

GA
(Xν ,Yν )(x̂−x, ξ̂ −ξ , ŷ−y, η̂ −η) ≥ a2 for (x,ξ ,y,η) ∈ RK,

sinceGA
(Xν ,Yν )(X,Y) > 0 if (X,Y) ̸= 0. We put

B = {(X,Y); GA
(Xν ,Yν )((X,Y)− (x̂, ξ̂ , ŷ, η̂)) < a2}.

It is obvious that

GA
(Xν ,Yν )((X,Y)− (x,ξ ,y,η))1/2

≥ GA
(Xν ,Yν )(x̂−x, ξ̂ −ξ , ŷ−y, η̂ −η)1/2−GA

(Xν ,Yν )((X,Y)− (x̂, ξ̂ , ŷ, η̂))1/2 > 0

if (X,Y) ∈ B and(x,ξ ,y,η) ∈ RK. Therefore, we haveRK∩B = /0, and there is
(x̃, ξ̃ , ỹ, η̃) ∈ R4n such that

(7) ⟨(x̃, ξ̃ , ỹ, η̃),(x,ξ ,y,η)⟩ < ⟨(x̃, ξ̃ , ỹ, η̃),(x̂, ξ̂ , ŷ, η̂)+(X,Y)⟩

if (x,ξ ,y,η) ∈ RK, (X,Y) ∈ R4n andGA
(Xν ,Yν )(X,Y) < a2. From the bipolar theo-

rem we have

(8) ⟨(x̃, ξ̃ , ỹ, η̃),(x,ξ ,y,η)⟩ ≤ ⟨(x̃, ξ̃ , ỹ, η̃),(x̂, ξ̂ , ŷ, η̂)⟩−ag0(Xν ,Yν )(ξ̃/2, ỹ/2)1/2

if (x,ξ ,y,η) ∈ RK. Indeed, putting

B1 = {(x,ξ ,y,η) ∈ R4n; GA
(Xν ,Yν )(x,ξ ,y,η) ≤ 1},

B2 = {(x,ξ ,y,η) ∈ R4n; g0(Xν ,Yν )(ξ/2,y/2) ≤ 1},

we have
B1 = {(0,ξ ,y,0) ∈ R4n; gA

0(Xν ,Yν )(y,ξ ) ≤ 1}

andB2 is a closed convex set and satisfies

(9) B2 = −B2 and 0∈
◦
B2,

where
◦
B2 denotes the interior ofB2. Define

B∗
j ={(x,ξ ,y,η) ∈ R4n; |⟨(x,ξ ,y,η),(x1,ξ 1,y1,η1)⟩| ≤ 1

for any(x1,ξ 1,y1,η1) ∈ B j} ( j = 1,2).
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Then we have

B∗
2 = {(0,ξ ,y,0) ∈ R4n; sup

(y1,ξ 1)
⟨(y,ξ ),(y1,ξ 1)⟩2/g0(Xν ,Yν )(ξ 1/2,y1/2) ≤ 1}

= {(0,ξ ,y,0) ∈ R4n; gA
0(Xν ,Yν )(y,ξ ) ≤ 1} = B1.

Similarly, we have

B∗
1 = {(x,ξ ,y,η) ∈ R4n; sup

(y1,ξ 1)
⟨(y,ξ ),(y1,ξ 1)⟩2/gA

0(Xν ,Yν )(y
1,ξ 1) ≤ 1}.

It is obvious thatB2 ⊂ B∗
1. Now suppose thatB∗

1 \B2 ̸= /0. Then, by the Hahn-
Banach theorem ( the Mazur theorem) and (9) there are(y0,ξ 0),(y1,ξ 1) ∈ R2n

such that(0,ξ 0,y0,0) ∈ B∗
1\B2(= (B∗

2)
∗ \B2) and

⟨(y0,ξ 0),(y1,ξ 1)⟩ > sup
(0,ξ ,y,0)∈B2

⟨(y,ξ ),(y1,ξ 1)⟩ > 0.

Putting(y2,ξ 2) =
(

sup(0,ξ ,y,0)∈B2
⟨(y,ξ ),(y1,ξ 1)⟩

)−1
(y1,ξ 1), we have(0,ξ 2,y2,

0) ∈ B∗
2(= B1) and

1≥ ⟨(y0,ξ 0),(y2,ξ 2)⟩ > 1,

which leads to contradiction. So we haveB∗
1(= (B∗

2)
∗) = B2 ( the bipolar theo-

rem),i.e.,

(10) g0(Xν ,Yν )(ξ/2,y/2) = sup
(y1,ξ 1)

⟨(y,ξ ),(y1,ξ 1)⟩2/gA
0(Xν ,Yν )(y

1,ξ 1).

Therefore, we have

inf
GA

(Xν ,Yν )(X,Y)<a2
⟨(x̃, ξ̃ , ỹ, η̃),(X,Y)⟩

= −a sup
(X,Y)

⟨(x̃, ξ̃ , ỹ, η̃),(X,Y)⟩/GA
(Xν ,Yν )(X,Y)1/2

= −a
{

sup
(X,Y)

⟨(x̃, ξ̃ , ỹ, η̃),(X,Y)⟩2/GA
(Xν ,Yν )(X,Y)

}1/2

= −a
{

sup
(y1,ξ 1)

⟨(ỹ, ξ̃ ),(y1,ξ 1)⟩2/gA
0(Xν ,Yν )(y

1,ξ 1)
}1/2

= −ag0(Xν ,Yν )(ξ̃/2, ỹ/2)1/2.

This, together with (7), gives (8). Put

(11) L(x,ξ ,y,η) = ⟨x̃,x− x̂⟩+ ⟨ξ̃ ,ξ − ξ̂ ⟩+ ⟨ỹ,y− ŷ⟩+ ⟨η̃ ,η − η̂⟩.
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Then we can see that

|L(0)/L(x, ·, ·,η)|g0(Xν ,Yν )
k (y,ξ ) ≤ k!R/(R−1)k+1(12)

for (x,ξ ,y,η) ∈ K andk∈ Z+.

Indeed, it follows from (7) with(X,Y) = 0 and Lemma 18.4.5 in [1] thatL(x,ξ ,y,
η) ̸= 0 and

(13) |L(0)/L|G(Xν ,Yν )
k (x,ξ ,y,η) ≤ k!R/(R−1)k+1 for (x,ξ ,y,η) ∈ RK.

On the other hand, we have

| f (x, ·, ·,η)|g0(Xν ,Yν )
k (y,ξ ) ≤ | f |G(Xν ,Yν )

k (x,ξ ,y,η),

which proves (12). Since

[exp(iA(Xξ ,Xy)),⟨ξ̃ , i∂Xξ ⟩] = ⟨ξ̃ ,Xy⟩exp(iA(Xξ ,Xy)) for (Xξ ,Xy) ∈ R2n,

we have

[exp(iA(Dξ ,Dy)),L(x,ξ ,y,η)]v = exp(iA(Dξ ,Dy))(⟨ξ̃ ,Dy⟩+ ⟨ỹ,Dξ ⟩)v,

where[T,S]v = T(Sv)−S(Tv) and⟨ξ̃ ,Dy⟩ = ∑n
j=1 ξ̃ jDy j . So we have

exp(iA(Dξ ,Dy))(L(x,ξ ,y,η)v(x,ξ ,y,η))|(x,ξ ,y,η)=(x̂,ξ̂ ,ŷ,η̂)

= exp(iA(Dξ ,Dy))(⟨ξ̃ ,Dy⟩+ ⟨ỹ,Dξ ⟩)v(x,ξ ,y,η)|(x,ξ ,y,η)=(x̂,ξ̂ ,ŷ,η̂),

sinceL(x̂, ξ̂ , ŷ, η̂) = 0. Replacingv by L−1v, we have

(exp(iA(Dξ ,Dy))v)(x̂, ξ̂ , ŷ, η̂)

= exp(iA(Dξ ,Dy))(⟨ξ̃ ,Dy⟩+ ⟨ỹ,Dξ ⟩)L(x,ξ ,y,η)−1v|(x,ξ ,y,η)=(x̂,ξ̂ ,ŷ,η̂).

Therefore, by induction we have

(exp(iA(Dξ ,Dy))v)(x̂, ξ̂ , ŷ, η̂)(14)

= exp(iA(Dξ ,Dy))((⟨ξ̃ ,Dy⟩+ ⟨ỹ,Dξ ⟩)L(x,ξ ,y,η)−1)kv|(x,ξ ,y,η)=(x̂,ξ̂ ,ŷ,η̂)

for k∈ N. By (13) and induction onk we see that for anyj ∈ Z+ andk∈ N there
is Cj,k,R > 0 such that

|(((⟨ξ̃ ,Dy⟩+ ⟨ỹ,Dξ ⟩)L(x̂, ·, ·, η̂)−1)kv)(x̂, ·, ·, η̂)|g0(Xν ,Yν )
j (y1,ξ 1)(15)
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≤Cj,k,R

(
g0(Xν ,Yν )(ξ̃/2, ỹ/2)1/2/|L(0)|

)k
sup

l≤k+ j
|v(x̂, ·, ·, η̂)|g0(Xν ,Yν )

l (y1,ξ 1)

for (y1,ξ 1) ∈ R2n.

(6) with k = 0, (14) and (15) yield, withCk,R > 0,

|(exp(iA(Dξ ,Dy))v)(x̂, ξ̂ , ŷ, η̂)| ≤Ck,R(g0(Xν ,Yν )(ξ̃/2, ỹ/2)1/2/|L(0)|)k(16)

× sup
j≤n+1+k

sup
(y1,ξ 1)

|v(x, ·, ·,η)|g0(Xν ,Yν )
j (y1,ξ 1)

for v∈C∞
0 (K). It follows from (8) with(x,ξ ,y,η) = 0 that

|L(0)| ≥ ag0(Xν ,Yν )(ξ̃/2, ỹ/2)1/2,

sinceg0(Xν ,Yν ) ≥ 0. Therefore, exchanging(x̂, ξ̂ , ŷ, η̂) with (x,ξ ,y,η) and taking

a = inf(x̂,ξ̂ ,ŷ,η̂)∈RKGA
(Xν ,Yν )(x− x̂,ξ − ξ̂ ,y− ŷ,η − η̂)1/2, from (16) we have

|exp(iA(Dξ ,Dy))v(x,ξ ,y,η)|(17)

≤Ck,R(1+ inf
(x̂,ξ̂ ,ŷ,η̂)∈RK

GA
(Xν ,Yν )(x− x̂,ξ − ξ̂ ,y− ŷ,η − η̂))−k/2

× sup
j≤n+1+k

sup
(y1,ξ 1)

|v(x, ·, ·,η)|g0(Xν ,Yν )
j (y1,ξ 1)

for k∈ Z+, R> 1, v∈C∞
0 (K) and(x,ξ ,y,η) /∈ RK. We note that exp(iA(Dξ ,Dy))

× v(x,ξ ,y,η) = 0 for v ∈ C∞
0 (K) if (x,ξ 1,y1,η) /∈ K for any (y1,ξ 1) ∈ R2n and

that inf(x̂,ξ̂ ,ŷ,η̂)∈RKGA
(Xν ,Yν )(x− x̂,ξ − ξ̂ ,y− ŷ,η− η̂) = inf(x,ξ̂ ,ŷ,η)∈RKgA

0(Xν ,Yν )(y−
ŷ,ξ − ξ̂ ) < ∞ if (x,ξ 1,y1,η) ∈ RK for some(y1,ξ 1) ∈ R2n. If (x,ξ ,y,η) ∈ RK,
then by (6) withk = 0 (17) is also valid, since inf(x̂,ξ̂ ,ŷ,η̂)∈RKGA

(Xν ,Yν )(x− x̂,ξ −
ξ̂ ,y− ŷ,η − η̂) = 0 for (x,ξ ,y,η) ∈ RK. Therefore, we have

|(exp(iA(Dξ ,Dy))v)(x,ξ ,x,ξ )|(18)

≤Ck,R(1+ inf
(x,η ,y,ξ )∈RK

gA
0(Xν ,Yν )(x−y,ξ −η))−k/2

× sup
j≤n+1+k

sup
(y,η)

|v(x, ·, ·,ξ )|g0(Xν ,Yν )
j (y,η)

for k∈ Z+, R> 1, v∈C∞
0 (K) and(x,ξ ) ∈ R2n.

Lemma 3. For X,Y,(y,ξ ) ∈ R2n we have

gA
0(X,Y)(y,ξ )(= GA

(X,Y)(0,ξ ,y,0) = 4gσ
0(X,Y)(y,ξ ))

= 4sup
ξ̃ ̸=0

⟨ξ̃ ,y⟩2

g1X(0, ξ̃ )
+4sup

ỹ̸=0

⟨ỹ,ξ ⟩2

g2Y(ỹ,0)
≤ 4gσ

1X(y,0)+4gσ
2Y(0,ξ ).
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Proof. By definition we have

GA
(X,Y)(0,ξ ,y,0) = 4 sup

(ỹ,ξ̃ )

(⟨ξ̃ ,y⟩+ ⟨ỹ,ξ ⟩)2

g1X(0, ξ̃ )+g2Y(ỹ,0)
(19)

≤ 4sup
ξ̃ ̸=0

⟨ξ̃ ,y⟩2

g1X(0, ξ̃ )
+4sup

ỹ̸=0

⟨ỹ,ξ ⟩2

g2Y(ỹ,0)
.

≤ 4gσ
1X(y,0)+4gσ

2Y(0,ξ ),

since
(a+b)2

c+d
≤ a2

c
+

b2

d
if a,b,c,d ≥ 0 andc+d > 0,

whereα/0 = ∞ for α ≥ 0. Put

A = sup
ξ̃ ̸=0

⟨ξ̃ ,y⟩2

g1X(0, ξ̃ )
, B = sup

ỹ̸=0

⟨ỹ,ξ ⟩2

g2Y(ỹ,0)

for a fixed(y,ξ ) ∈ R2n. Then there is(ŷ, ξ̂ ) ∈ R2n such that

A =
⟨ξ̂ ,y⟩2

g1X(0, ξ̂ )
, B =

⟨ŷ,ξ ⟩2

g2Y(ŷ,0)
.

From (19) we have

GA
(X,Y)(0,ξ ,y,0) ≥ 4

(⟨µξ̂ ,y⟩+ ⟨λ ŷ,ξ ⟩)2

g1X(0,µξ̂ )+g2Y(λ ŷ,0)

= 4
(µA 1/2g1X(0, ξ̂ )1/2 +λB1/2g2Y(ŷ,0)1/2)2

µ2g1X(0, ξ̂ )+λ 2g2Y(ŷ,0)

for λ ,µ > 0. Takingµ = A 1/2/g1X(0, ξ̂ )1/2 andλ = B1/2/g2Y(ŷ,0)1/2 we have

GA
(X,Y)(0,ξ ,y,0) ≥ 4(A +B),

which givesGA
(X,Y)(0,ξ ,y,0) = 4(A +B).

We note that Lemma 3 and (A-3) yield

(20) 4c(gσ
1X(y,0)+gσ

2Y(0,ξ )) ≤ gA
0(X,Y)(y,ξ ) ≤ 4(gσ

1X(y,0)+gσ
2Y(0,ξ ))

for X,Y,(y,ξ ) ∈ R2n.
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Lemma 4 (Proposition 18.5.3 in [1]). g is σ temperate and mj ( j = 1,2) are
σ ,g temperate( under the assumptions(A-1)–(A-3)). Moreover, G is uniformly
A temperate in∆ ≡ {(x,ξ ,x,ξ ); (x,ξ ) ∈ R2n}, i.e., G is slowly varying, and there
are C(G) > 0 and N(G) such that

(21) G(x,η ,y,ξ )(X,Y) ≤C(G)G(x,ξ ,x,ξ )(X,Y)(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))N(G)

for (x,ξ ),(y,η),X,Y ∈ R2n.

Proof. Let F1 andF2 be positive definite quadratic forms on the vector space
V (≡ R2n). Define the dual formsF ′

j ( j = 1,2) on the dual spaceV ′ (∼= R2n) by

F ′
j (X̃) = sup

X∈V\{0}

⟨X̃,X⟩2

Fj(X)
for X̃ ∈V ′.

Then we can see that

(22) (F1 +F2)′(X̃) = inf
t̃∈V ′

(F ′
1(X̃− t̃)+F ′

2(t̃)) ( X̃ ∈V ′).

Indeed, we can choose a basis ofV so thatF1(X) is represented asF1(X) =
∑2n

j=1X2
j . Moreover, we can choose an orthonormal basis ofV so that

F1(X) =
2n

∑
j=1

X2
j , F2(X) =

2n

∑
j=1

a jX
2
j ( X ∈V),

wherea j > 0. Then by the dual basis ofV ′ F ′
1(X̃) andF ′

2(X̃) are represented as

F ′
1(X̃) =

2n

∑
j=1

X̃2
j , F ′

2(X̃) =
2n

∑
j=1

a−1
j X̃2

j ,

(F1 +F2)′(X̃) =
2n

∑
j=1

(1+a j)−1X̃2
j ( X̃ ∈V ′).

On the other hand, we have

inf
t̃∈V ′

(F ′
1(X̃− t̃)+F ′

2(t̃))

=
2n

∑
j=1

inf
t̃ j∈R

((X̃j − t̃ j)2 +a−1
j t̃2

j ) =
2n

∑
j=1

(1+a j)−1X̃2
j ( X̃ ∈V ′).

This proves (22). Therefore, we have

(23) gσ
X(Y) = inf

t∈R2n
2(gσ

1X(Y− t)+gσ
2X(t)) for X,Y ∈ R2n.
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First let us prove that there areC > 0 andN satisfying

(24) g j X(t) ≤CgjY(t)(1+gσ
X(X−Y))N ( j = 1,2),

which implies thatg is σ temperate. From (23) it follows that (24) is valid if and
only if, with someC′ > 0,

(24)′ g j X(t) ≤C′g jY(t)MN, M = 1+gσ
1X(Y− t0)+gσ

2X(t0−X)

for anyX,Y, t, t0 ∈ R2n and j = 1,2. Applying the bipolar theorem, we have

(gσ
j X)σ = g j X ( j = 1,2, X ∈ R2n) ( see the proof of (10)).

So (A-1) implies that

g1X(t) ≤C(g1,g2)g1Y(t)(1+gσ
2Y(X−Y))N(g1,g2),

g2X(t) ≤C(g1,g2)g2Y(t)(1+gσ
1Y(X−Y))N(g1,g2)

for X,Y, t ∈ R2n. This gives

g1X(t) ≤C(g1,g2)g1t0(t)(1+gσ
2t0(t0−X))N(g1,g2)

≤C′(g1,g2)g1t0(t)M
(N(g2)+1)N(g1,g2),

g2X(t) ≤C1(g2)g2t0(t)(1+gσ
2X(t0−X))N(g2) ≤C1(g2)g2t0(t)M

N(g2),

g1t0(t) ≤C1(g1)g1Y(t)(1+gσ
1t0(Y− t0))N(g1),

g2t0(t) ≤C(g1,g2)g2Y(t)(1+gσ
1Y(Y− t0))N(g1,g2)

≤C′(g1,g2)g2Y(t)(1+gσ
1t0(Y− t0))(N(g1)+1)N(g1,g2),

1+gσ
1t0(Y− t0) ≤C(g1,g2)(1+gσ

1X(Y− t0))(1+gσ
2X(t0−X))N(g1,g2)(25)

≤C(g1,g2)MN(g1,g2)+1

for X,Y, t0, t ∈ R2n, since theg j areσ temperate and

1+gσ
2t0(t0−X) ≤C1(g2)(1+gσ

2X(t0−X))N(g2)+1 ≤C1(g2)MN(g2)+1,(26)

1+gσ
1Y(Y− t0) ≤C1(g1)(1+gσ

1t0(Y− t0))N(g1)+1.(27)

Therefore, we have

g1X(t) ≤C′(g1,g2)C1(g1)C(g1,g2)N(g1)g1Y(t)

×M(N(g1)+N(g2)+1)N(g1,g2)+N(g1),
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g2X(t) ≤C′(g1,g2)C1(g2)C(g1,g2)(N(g1)+1)N(g1,g2)g2Y(t)

×M(N(g1)+1)(N(g1,g2)+1)N(g1,g2)+N(g2)

for X,Y, t ∈ R2n, which proves (24)′ and (24). It is obvious that themj are g
continuous. Let us repeat the same argument as forg in order to prove that themj

areσ ,g temperate. For this purpose it suffices to show that there areC1 > 0 and
N1 such that

mj(X) ≤C1mj(Y)MN1, M = 1+gσ
1X(Y− t0)+gσ

2X(t0−X)

for anyX,Y, t0 ∈ R2n and j = 1,2. From (A-2) and (25) – (27) we have

m1(X) ≤Cm1(t0)(1+gσ
2t0(t0−X))N ≤CC1(g2)Nm1(t0)M(N(g2)+1)N,

m1(t0) ≤C1(m1)m1(Y)(1+gσ
1t0(Y− t0))N(m1)

≤C1(m1)C(g1,g2)N(m1)m1(Y)MN(m1)(N(g1,g2)+1)

for X,Y, t0 ∈ R2n and, therefore,

m1(X) ≤C1m1(Y)MN1.

Similarly, we have

m2(X) ≤C1(m2)m2(t0)(1+gσ
2X(t0−X))N(m2) ≤C1(m2)m2(t0)MN(m2),

m2(t0) ≤Cm2(Y)(1+gσ
1Y(Y− t0))N

≤CC1(g1)Nm2(Y)(1+gσ
1t0(Y− t0))N(N(g1)+1)

≤CC1(g1)NC(g1,g2)N(N(g1)+1)m2(Y)MN(N(g1)+1)(N(g1,g2)+1),

m2(X) ≤C1m2(Y)MN1

for X,Y, t0 ∈ R2n, which proves that themj areσ ,g temperate. Moreover, (24)
yields

g1(x,η)(X)+g2(y,ξ )(Y)(28)

≤C(g1(x,ξ )(X)+g2(x,ξ )(Y))(1+gσ
(x,η)(0,ξ −η)+gσ

(y,ξ )(x−y,0))N

for (x,η),(y,ξ ),X,Y ∈ R2n. Put

M̃ = 1+gσ
(x,η)(x−y,0)+gσ

(y,ξ )(0,ξ −η).

Then we have

gσ
(y,η)(x−y,0) ≤Cgσ

(x,η)(x−y,0)(1+gσ
(x,η)(x−y,0))N ≤CM̃N+1,
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gσ
(y,η)(0,ξ −η) ≤Cgσ

(y,ξ )(0,ξ −η)(1+gσ
(y,ξ )(0,ξ −η))N ≤CM̃N+1,

gσ
(x,η)(0,ξ −η) ≤Cgσ

(y,η)(0,ξ −η)(1+gσ
(y,η)(x−y,0))N ≤C′M̃(N+1)2

,

gσ
(y,ξ )(x−y,0) ≤Cgσ

(y,η)(x−y,0)(1+gσ
(y,η)(0,ξ −η))N ≤C′M̃(N+1)2

,

sinceg is σ temperate. This, together with (20) and (28), gives, with someC > 0,

G(x,η ,y,ξ )(X,Y) ≤CG(x,ξ ,x,ξ )(X,Y)(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))N(N+1)2

,

sincegσ
X ≤ 2gσ

j X . Therefore,G is uniformlyA temperate in∆.

Let R,R0 ∈ R satisfy 0< R< R0 < c1/2
0 , and put

Uν = {(X,Y) ∈ R4n; G(Xν ,Yν )(X−Xν ,Y−Yν) ≤ R2
0},

U ′
ν = {(X,Y) ∈ R4n; G(Xν ,Yν )(X−Xν ,Y−Yν) ≤ c0}.

Let us apply (18) tov = Φνu(≡ uν) with K, RandG(Xν ,Yν ) replaced byBR
ν , R0/R

andG(Xν ,Yν )/R2, respectively.

Lemma 5 (Lemma 18.4.8 in [1]). There are C1 > 0 and N1 satisfying

∞

∑
ν=1

(1+dν(x,ξ ))−N1 ≤C1 for (x,ξ ) ∈ R2n,

where

dν(x,ξ ) =


inf(x,η ,y,ξ )∈Uν gA

0(x,η ,y,ξ )(x−y,ξ −η)

if there is(y1,η1) ∈ R2n satisfying(x,η1,y1,ξ ) ∈Uν ,

∞ otherwise.

Proof. Let us repeat the proof in [1] again. Let(x,ξ ) ∈ R2n. We may assume
thatg0(x,ξ ,x,ξ ) is the square of the Euclidean norm| · | of R2n. Then (A-4) implies
that

|t|2 ≤ gA
0(x,ξx,ξ )(t) ( t ∈ R2n).

Let k∈ N, and put
Mk = {ν ∈ N; dν(x,ξ ) ≤ k}.

By definition, for everyν ∈ Mk there is(ŷν , η̂ν) ∈ R2n satisfying(x, η̂ν , ŷν ,ξ ) ∈
Uν and

gA
0(x,η̂ν ,ŷν ,ξ )(x− ŷν ,ξ − η̂ν) ≤ k.

SinceG is uniformly A temperate in∆, we have

C−1
0 ≤ g0(Xν ,Yν )/g0(x,η̂ν ,ŷν ,ξ ) ≤C0,
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g0(x,η̂ν ,ŷν ,ξ )(t) ≤C(G)g0(x,ξ ,x,ξ )(t)(1+gA
0(x,η̂ν ,ŷν ,ξ )(x− ŷν ,ξ − η̂ν))N(G)(29)

≤ (2k)N(G)C(G)|t|2 for t ∈ R2n.

Put, withc1 > 0,

Vν = {(y,η) ∈ R2n; |(y− ŷν ,η − η̂ν)| < c1k−N(G)/2} for ν ∈ Mk.

If (y,η) ∈Vν , then by (29) we have

g0(x,η̂ν ,ŷν ,ξ )(y− ŷν ,η − η̂ν) ≤ 2N(G)C(G)c2
1.

Choosec1 > 0 so that 2N(G)C2
0C(G)c2

1 < (c1/2
0 −R0)2. Then we have

G(Xν ,Yν )(x−xν ,η −ξν ,y−yν ,ξ −ην)1/2

≤ G(Xν ,Yν )(x−xν , η̂ν −ξν , ŷν −yν ,ξ −ην)1/2 +g0(Xν ,Yν )(y− ŷν ,η − η̂ν)1/2

≤ R0 +C0g0(x,η̂ν ,ŷν ,ξ )(y− ŷν ,η − η̂ν)1/2 < c1/2
0 if (y,η) ∈Vν ,

whereXν = (xν ,ξν) andYν = (yν ,ην). This implies that

(30) Vν ⊂ {(y,η) ∈ R2n; (x,η ,y,ξ ) ∈U ′
ν}.

Since

(31) gA
0(x,ξ ,x,ξ )(t) ≤C(G)gA

0(x,η ,y,ξ )(t)(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))N(G),

we have

|(x− ŷν ,ξ − η̂ν)|2 ≤ gA
0(x,ξ ,x,ξ )(x− ŷν ,ξ − η̂ν)

≤C(G)(1+gA
0(x,η̂ν ,ŷν ,ξ )(x− ŷν ,ξ − η̂ν))N(G)+1 ≤ (2k)N(G)+1C(G).

So there isC > 0 such that

(32) Vν ⊂ {(y,η) ∈ R2n; |(y−x,η −ξ )| < Ck(N(G)+1)/2}.

With ε = 1/2 in Lemma 2 the number ofU ′
ν which can overlap is not greater than

Nε . Therefore, by (30) and (32) there are positive constantsC, C′ andc such that

c|Mk|k−nN(G) ≤ ∑
ν∈Mk

µ(Vν) ≤Cµ
( ∪

ν∈Mk

Vν

)
≤C′kn(N(G)+1),

where|Mk| denotes the number of the elements inMk andµ denotes the Lebesgue
measure inR2n. PuttingN1 = [2nN(G)+n]+2, we have, with someC,C1 > 0,

|Mk| ≤CkN1−1,
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∑
ν∈N

(1+dν(x,ξ ))−N1 ≤ ∑
ν∈M1

1−N1 +
∞

∑
k=1

∑
ν∈M2k\M2k−1

(1+2k−1)−N1

≤C
(

1+
∞

∑
k=1

2k(N1−1)(1+2k−1)−N1

)
≤C

(
1+

∞

∑
k=1

2N1−k
)
≤C1,

where[κ] denotes the largest integer≤ κ.

Since

dν(x,ξ ) ≤C0gA
0(Xν ,Yν )(x−y,ξ −η) if (x,η ,y,ξ ) ∈Uν ,

C−1
0 ≤ g0(x,η ,y,ξ )/g0(Xν ,Yν ) ≤C0 if (x,η ,y,ξ ) ∈ suppuν ,

(18) yields, with someC′
k,R > 0,

|(exp(iA(Dξ ,Dy))uν)(x,ξ ,x,ξ )| ≤C′
k,R(1+dν(x,ξ ))−k/2(33)

× sup
j≤2n+1+k

sup
(y,η)

|uν(x, ·, ·,ξ )|g0(x,η ,y,ξ )
j (y,η)

for k∈ Z+ and(x,ξ ) ∈ R2n. It follows from (A-2) and (20) that

m1(x,η)m2(y,ξ )(34)

≤C2m(x,ξ )(1+gσ
2(x,ξ )(0,ξ −η))N(1+gσ

1(x,ξ )(x−y,0))N

≤C′m(x,ξ )(1+gA
0(x,ξ ,x,ξ )(x−y,ξ −η))2N,

whereC′ > 0. From (31) and (34) there areC > 0 andN′ such that

(35) M(x,η ,y,ξ ) ≤Cm(x,ξ )(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))N′

for (x,ξ ),(y,η) ∈ R2n. Let (x,ξ ) ∈ R2n, and choose(ŷν , η̂ν) ∈ R2n so that(x, η̂ν ,
ŷν ,ξ ) ∈Uν and

(36) dν(x,ξ ) ≤ gA
0(x,,η̂ν ,ŷν ,ξ )(x− ŷν ,ξ − η̂ν) ≤ [dν(x,ξ )]+1.

Then, from (35) we have, withC′ > 0,

M(x,η ,y,ξ ) ≤C(m1)C(m2)M(x, , η̂ν , ŷν ,ξ )(37)

≤C′m(x,ξ )(1+dν(x,ξ ))N′
if (x,η ,y,ξ ) ∈Uν .

Therefore, from Lemma 5, (33) and (37) there isk0 ∈ N satisfying

∞

∑
ν=1

|(exp(iA(Dξ ,Dy))uν)(x,ξ ,x,ξ )|(38)
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≤Cm(x,ξ ) sup
j≤k0

|u(x, ·, ·,ξ )|g0(x,η ,y,ξ )
j (y,η)/M(x,η ,y,ξ ).

Let B = {v j} j=1,2,··· be a bounded subset ofS(M,G). Then the Ascoli-Arzel̀a
theorem implies thatv j → v in C∞(R4n) as j → ∞ andv∈ S(M,G) if v j(X,Y) →
v(X,Y) as j → ∞ for every(X,Y) ∈ R4n. It is obvious that

exp(iA(Dξ ,Dy))uν)(x,ξ ,y,η) =
∞

∑
ν=1

exp(iA(Dξ ,Dy))uν)(x,ξ ,y,η)

for u ∈ S(M,G)∩C∞
0 (R4n). Assume thatv j ∈ C∞

0 (R4n) andv j → v in C∞(R4n).
Note thatv∈ S(M,G). Write v j,ν = Φνv j . By (38) withuν replaced byv j,ν or its
proof, for any(x,ξ ) ∈ R2n andε ≥ 0 there isν0 ∈ N such that∣∣∣ ∞

∑
ν=ν0

(exp(iA(Dξ ,Dy))v j,ν)(x,ξ ,x,ξ )
∣∣∣ < ε/3 ( j = 1,2, · · ·).

SinceDαv j → Dαv uniformly on
∪ν0−1

ν=1 Uν , from (33) there isj0 ∈ N such that

∣∣∣ν0−1

∑
ν=1

(exp(iA(Dξ ,Dy))(v j,ν −v j ′,ν))(x,ξ ,x,ξ )
∣∣∣ < ε/3 if j, j ′ ≥ j0,

which gives

|(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )− (exp(iA(Dξ ,Dy))v j ′)(x,ξ ,x,ξ )| < ε

if j, j ′ ≥ j0. So, for (x,ξ ) ∈ R2n {(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )} j=1,2,··· con-
verges inC. Therefore, we can define

(exp(iA(Dξ ,Dy))v)(x,ξ ,x,ξ ) = lim
j→∞

(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )

for (x,ξ ) ∈ R2n. Recall thatB = {v j} j=1,2,··· is a bounded subset ofS(M,G), and
assume thatv∈ S(M,G) andv j → v in C∞(R4n) as j → ∞. We put

vk
j =

k

∑
ν=1

Φνv j ( k = 1,2, · · ·).

Then{vk
j} j,k=1,2,··· (⊂ C∞

0 (R4n)) is bounded inS(M,G) andvk
j → v j in C∞(R4n)

ask→ ∞. Let (x,ξ ) ∈ R2n andε > 0. There isK ∈ N satisfying

|(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )− (exp(iA(Dξ ,Dy))vk
j)(x,ξ ,x,ξ )| < ε/2
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for k≥ K and j ∈ N. In particular,

|(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )− (exp(iA(Dξ ,Dy))v
j
j)(x,ξ ,x,ξ )| < ε/2

for j ≥ K. It is obvious thatv j
j → v in C∞(R4n) as j → ∞. Therefore, we have

(exp(iA(Dξ ,Dy))v)(x,ξ ,x,ξ ) = lim
j→∞

(exp(iA(Dξ ,Dy))v
j
j)(x,ξ ,x,ξ ),

which implies that for each(x,ξ ) ∈ R2n there isj0 ∈ N satisfying

|(exp(iA(Dξ ,Dy))v)(x,ξ ,x,ξ )− (exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ )| < ε if j ≥ j0.

So we have the following

Theorem 6 (Theorem 18.4.10 in [1]). For each(x,ξ ) ∈ R2n the linear form
C∞

0 (R4n) ∋ u 7→ (exp(iA(Dξ ,Dy))u)(x,ξ ,x,ξ ) ∈ C can be extended uniquely to a
weakly continuous linear form, i.e.,

(exp(iA(Dξ ,Dy))v j)(x,ξ ,x,ξ ) → (exp(iA(Dξ ,Dy))v)(x,ξ ,x,ξ ) as j→ ∞

if {v j} j=1,2,··· is bounded in S(M,G) and vj → v in C∞(R4n) as j→ ∞. Moreover,
there are k0 ∈ N and C> 0 such that

|(exp(iA(Dξ ,Dy))u)(x,ξ ,x,ξ )| ≤Cm(x,ξ )

× sup
j≤k0

sup
(y,η)

|u(x, ·, ·,ξ )|g0(x,η ,y,ξ )
j (y,η)/M(x,η ,y,ξ ).

Here k0 and C depend only on the constants in(1), (2), (21)and(35).

Let (x,ξ ) ∈ R2n and ν ∈ N. From (18) it follows that forp ∈ Z+ there is
Cp,R0,R > 0 satisfying

|⟨Dx,ξ , t1⟩ · · · ⟨Dx,ξ , tk⟩(exp(iA(Dξ ,Dy))uν)(x,ξ ,x,ξ )|(39)

= |exp(iA(Dξ ,Dy))⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν |y=x,η=ξ

≤Cp,R0,R(1+ inf
(x,η ,y,ξ )∈Uν

gA
0(Xν ,Yν )(x−y,ξ −η))−p/2

× sup
j≤n+1+p

sup
(y,η)

|(⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · ·

⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x, ·, ·,ξ )|g0(Xν ,Yν )
j (y,η),

wheret1, · · · , tk ∈ R2n. Let (ŷν , η̂ν) ∈ R2n satisfy (x, η̂ν , ŷν ,ξ ) ∈ Uν and (36).
Then by (21) we have

G(Xν ,Yν )(tl , tl ) ≤C0G(x,η̂ν ,ŷν ,ξ )(tl , tl )
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≤C0C(G)G(x,ξ ,x,ξ )(tl , tl )(1+gA
0(x,η̂ν ,ŷν ,ξ )(x− ŷν ,ξ − η̂ν))N(G)

≤C′(G)g(x,ξ )(tl )(1+dν(x,ξ ))N(G) ( l = 1,2, · · · ,k),

whereC′(G) = 2N(G)+1C0C(G). So we have

|(⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x, ·, ·,ξ )|g0(Xν ,Yν )
j (y,η)

= sup
s1,··· ,sj∈R2n

|(⟨Dy,ξ ,s1⟩ · · · ⟨Dy,ξ ,sj⟩⟨Dx,ξ ,y,η ,(t1, t1)⟩

· · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x,η ,y,ξ )|
j

∏
µ=1

g0(Xν ,Yν )(sµ)−1/2

≤C′(G)k/2
k

∏
l=1

g(x,ξ )(tl )
1/2(1+dν(x,ξ ))N(G)k/2

× sup
s1,··· ,sj∈R2n

|(⟨Dy,ξ ,s1⟩ · · · ⟨Dy,ξ ,sj⟩⟨Dx,ξ ,y,η ,(t1, t1)⟩

· · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x,η ,y,ξ )|

×
k

∏
l=1

G(Xν ,Yν )(tl , tl )
−1/2

j

∏
µ=1

g0(Xν ,Yν )(sµ)−1/2

≤ (C0C
′(G))k/2C j/2

0

k

∏
l=1

g(x,ξ )(tl )
1/2(1+dν(x,ξ ))N(G)k/2|uν |Gj+k(x,η ,y,ξ ).

This, together with (37) and (39), yields

|(exp(iA(Dξ ,Dy))uν)(x,ξ ,x,ξ )|gk(40)

≤Ck,p,R0,R(G)m(x,ξ )(1+dν(x,ξ ))−p/2+N′+N(G)k/2

× sup
j≤n+1+p+k

sup
(y,η)

|uν |Gj (x,η ,y,ξ )/M(x,η ,y,ξ ),

whereCk,p,R0,R > 0. Therefore, we have the following

Theorem 7 (Theorem 18.4.10′ in [1]). For any k∈ Z+ there are k0 ∈ N and
Ck > 0 such that

|(exp(iA(Dξ ,Dy))u)(x,ξ ,x,ξ )|gk
≤Ckm(x,ξ ) sup

j≤k0

sup
(y,η)

|u|Gj (x,η ,y,ξ )/M(x,η ,y,ξ )

for u∈ S(M,G) and (x,ξ ) ∈ R2n. Here k0 and C depend only on k and the con-
stants in(1) – (3), (21) and (35). Moreover, the linear map: S(M,G) ∋ u 7→
(exp(iA(Dξ ,Dy))u)(x,ξ ,x,ξ ) ∈ S(m,g) is weakly continuous.
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Define

H(X,Y) =
{

sup
t∈R2n\{0}

g0(X,Y)(t)

gA
0(X,Y)(t)

}1/2
( X,Y ∈ R2n).

Recall thath(X) = H(X,X) ( X ∈ R2n). ThenH(X,Y) is G continuous and

H(x,η ,y,ξ ) ≤C(G)h(x,ξ )(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))N(G)

for (x,ξ ),(y,η) ∈ R2n. Indeed, by (21) and (31) we have

H(x,η ,y,ξ )2 ≤ sup
t∈R2n\{0}

C(G)g0(x,ξ ,x,ξ )(t)

C(G)−1gA
0(x,ξ ,x,ξ )(t)

(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))2N(G)

= C(G)2h(x,ξ )2(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))2N(G).

Let l ∈ Z+, and put

Rl (x,ξ ;u) =
∞

∑
ν=1

{
(exp(iA(Dξ ,Dy))uν)(x,ξ ,x,ξ )

−∑
j<l

[(iA(Dξ ,Dy)) juν(x,ξ ,y,η)]y=x,η=ξ / j!
}

for u ∈ S(M,G). Note thatRl (x,ξ ) = Rl (x,ξ ;a1a2), which is defined by (5).
Suppose that(x,ξ ,x,ξ ) /∈U ′

ν . Then we have

g0(Xν ,Yν )(x−y,ξ −η) = G(Xν ,Yν )(0,ξ −η ,x−y,0) ≥ (c1/2
0 −R0)2 > 0,

(0 <)c1 ≡C−1
0 (c1/2

0 −R0)2 ≤ g0(x,η ,y,ξ )(x−y,ξ −η)

≤ H(x,η ,y,ξ )2gA
0(x,η ,y,ξ )(x−y,ξ −η)

≤C(G)2h(x,ξ )2(1+gA
0(x,η ,y,ξ )(x−y,ξ −η))2N(G)+1

if (x,η ,y,ξ ) ∈Uν . Therefore, we have

(41) 1≤ (C(G)/
√

c1)h(x,ξ )(1+dν(x,ξ ))N(G)+1/2,

noting thatdν(x,ξ ) = ∞ unless there is(y1,η1) ∈ R2n satisfying(x,η1,y1,ξ ) ∈
Uν . By (41) we have

|(exp(iA(Dξ ,Dy))⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)(42)

−∑
j<l

(iA(Dξ ,Dy)) j
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×⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)/ j!|y=x,η=ξ

≤C′
l ,k,p,R0,R(G)m(x,ξ )

k

∏
µ=1

g(x,ξ )(tµ)1/2h(x,ξ )l

× (1+dν(x,ξ ))−p/2+N′+N(G)(k/2+l)+l/2

× sup
j≤n+1+p+k

sup
(y,η)

|uν |Gj (x,η ,y,ξ )/M(x,η ,y,ξ )

for t1, · · · , tk ∈ R2n, applying the same argument as for (40), since(iA(Dξ ,Dy)) j

×uν(x,ξ ,y,η)|y=x,η=ξ = 0. Next suppose that(x,ξ ,x,ξ ) ∈U ′
ν . It follows from

(6) that

|exp(iA(Dξ ,Dy))⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)(43)

−∑
j<l

(iA(Dξ ,Dy)) j

×⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)/ j!|y=x,η=ξ

≤Cl sup
j≤n+1

sup
(y1,η1)

|((iA(Dξ ,Dy))l ⟨Dx,ξ ,y,η ,(t1, t1)⟩

· · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x, ·, ·,ξ )|
g0(x,ξ1,y1,ξ )
j (y1,ξ 1).

Let (x,ξ 1,y1,ξ ) ∈Uν . We can assume without loss of generality thatg0(x,ξ 1,y1,ξ )

is equal to the square of Euclidean norm| · | of R2n, i.e., g0(x,ξ 1,y1,ξ )(X) = ∑2n
j=1X2

j .

Moreover, choosing an orthonormal basis ofR2n suitably, we may assume that

g0(x,ξ 1,y1,ξ )(X) =
2n

∑
j=1

X2
j for X ∈ R2n,

A(Dξ ,Dy) =
2n

∑
j=1

b jD
2
Xj

.

Then we have

A =

b1
. . .

b2n

 ,

gA
0(x,ξ 1,y1,ξ )(X) =

2n

∑
j=1

b−2
j X2

j ,

H(x,ξ 1,y1,ξ ) = sup
1≤ j≤2n

|b j |.
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Therefore, we have

|((iA(Dξ ,Dy))l ⟨Dx,ξ ,y,η ,(t1, t1)⟩(44)

· · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν)(x, ·, ·,ξ )|
g0(x,ξ1,y1,ξ )
j (y1,ξ 1)

≤ H(x,ξ 1,y1,ξ )l |uν |Gj+2l+k(x,ξ
1,y1,ξ )

k

∏
µ=1

G(x,ξ 1,y1,ξ )(tµ , tµ)1/2.

SinceH(x,ξ 1,y1,ξ ) ≤C0h(x,ξ ), G(x,ξ 1,y1,ξ )(tµ , tµ) ≤ 2C0g(x,ξ )(tµ) andM(x,ξ 1,

y1,ξ ) ≤ C(M)m(x,ξ ) if (x,ξ 1,y1,ξ ) ∈ Uν , from (43) and (44) we see that, with
someCl ,k,R0,R > 0,

|exp(iA(Dξ ,Dy))⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)

−∑
j<l

(iA(Dξ ,Dy)) j

×⟨Dx,ξ ,y,η ,(t1, t1)⟩ · · · ⟨Dx,ξ ,y,η ,(tk, tk)⟩uν(x,ξ ,y,η)/ j!|y=x,η=ξ

≤Cl ,k,R0,Rm(x,ξ )
k

∏
µ=1

g(x,ξ )(tµ)1/2h(x,ξ )l

× sup
j≤n+1+2l+k

sup
(y,η)

|uν |Gj (x,η ,y,ξ )/M(x,η ,y,ξ ).

Therefore, for anyl ,k∈ Z+ there arek0 ∈ N andCl ,k > 0 such that

|Rl (·, ·;u)|gk(x,ξ ) ≤Cl ,km(x,ξ )h(x,ξ )l

× sup
j≤k0

sup
(y,η)

|u|Gj (x,η ,y,ξ )/M(x,η ,y,ξ ) for u∈ S(M,G).

This, together with Theorem 7, proves Theorem 1.

EXAMPLE8. Let ρ j ∈ [0,1] andδ j ∈ [0,1) ( j = 1,2) satisfyδ2 ≤ ρ1. Define

g j (x,ξ ) = ⟨ξ ⟩2δ j |dx|2 + ⟨ξ ⟩−2ρ j |dξ |2 ( j = 1,2),

where⟨ξ ⟩ = (1+ |ξ |2)1/2. Then we have

gσ
j (x,ξ ) = ⟨ξ ⟩2ρ j |dx|2 + ⟨ξ ⟩−2δ j |dξ |2,

g0(x,ξ ,x,ξ ) = ⟨ξ ⟩2δ2|dx|2 + ⟨ξ ⟩−2ρ1|dξ |2,

g(x,ξ ) = ((⟨ξ ⟩2δ1 + ⟨ξ ⟩2δ2)|dx|2 +(⟨ξ ⟩−2ρ1 + ⟨ξ ⟩−2ρ2)|dξ |2)/2,

gA
0(x,ξ ,x,ξ ) = 4(⟨ξ ⟩2ρ1|dx|2 + ⟨ξ ⟩−2δ2|dξ |2),

h(x,ξ ) = ⟨ξ ⟩δ2−ρ1/2.
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Theng j ( j = 1,2) areσ temperate Riemannian metrics and the assumptions (A-
1), (A-3) and (A-4) are satisfied. Letµ j ∈ R ( j = 1,2), and leta j ∈ S

µ j

ρ j ,δ j
(=

S(⟨ξ ⟩µ j ,g j)) ( j = 1,2). Then the assumption (A-2) withmj(x,ξ ) = ⟨ξ ⟩µ j is
satisfied. Theorem 1 implies that

a1(x,ξ )◦a2(x,ξ )− ∑
|α |<l

a(α)
1 (x,ξ )a2(α)(x,ξ )/α! ∈ Sµ1+µ2−l(ρ1−δ2)

ρ,δ ,

whereρ = min{ρ1,ρ2} andδ = max{δ1,δ2}. On the other hand, Theorem 18.5.5
of [1] implies that

(a1#a2)(x,ξ )− ∑
|α|+|β |<l

(−1)|β |2−|α|−|β |a(α)
1(β )(x,ξ )a(β )

2(α)(x,ξ )/(α!β !)

∈ Sµ1+µ2−l min{ρ2−δ1,ρ1−δ2}
ρ,δ .

If, for example,ρ2 = δ1 and ρ1 > δ2, then the classical calculus for pseudo-
differential operators is better than the Weyl calculus in some sense.
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