Puiseux expansions of the roots of the equations of pseudo-polynomials with a small parameter

Seiichiro Wakabayashi

January 16, 2019

This note is a supplement to [W]. Let U be a non-void bounded open subset of \mathbf{R}^n , and let $m \in \mathbf{N}$ and $a_j(s,\eta) \in \mathcal{A}([-1,1] \times \overline{U})$ ($0 \le j \le m-1$). Here $f(\eta) \in \mathcal{A}(\Omega)$ means that $f(\eta)$ is a real analytic function of η in a neighborhood of Ω , where $\Omega \subset \mathbf{R}^n$. We may assume that U is connected. Put $a_m(s,\eta) \equiv 1$. Since \overline{U} is compact, there is $\delta > 0$ such that the $a_j(s,\eta)$ can be regarded as analytic functions defined in a neighborhood of $V \equiv \{(s,\eta) \in \mathbf{C} \times \overline{U}; \operatorname{Re} s \in (-1-\delta, 1+\delta) \text{ and } |\operatorname{Im} \delta| < \delta\}$. Define

$$p(t, s, \eta) = \sum_{j=0}^{m} a_j(s, \eta) t^j.$$

Noting that $\mathcal{A}([-1,1] \times \overline{U})$ is an integral domain, we denote by \mathcal{K} its quotient field. Then we can write

$$p(t, s, \eta) = p_1(t, s, \eta)^{k_1} \cdots p_{\nu}(t, s, \eta)^{k_{\nu}},$$

where $p_j(t, s, \eta) \in \mathcal{K}[t]$ ($1 \le j \le \nu$) are monic irreducible polynomials of t, $\deg_t p_j(t, s, \eta) \ge 1$ and the $p_j(t, s, \eta)$ are mutually prime in $\mathcal{K}[t]$. Put

$$P(t,s,\eta) = p_1(t,s,\eta) \cdots p_{\nu}(t,s,\eta),$$

and denote by $R(s,\eta)$ the discriminant of $P(t,s,\eta) = 0$ in t, *i.e.*, the resultant of $P(t,s,\eta)$ and $(\partial P/\partial t)(t,s,\eta)$ as polynomials of t. Then we have $R(s,\eta) \neq 0$ in \mathcal{K} , *i.e.*, $R(s,\eta) \not\equiv 0$ in (s,η) . Since $R(s,\eta) \in \mathcal{K}$, there

is $\psi(s,\eta) \in \mathcal{A}([-1,1] \times \overline{U})$ such that $\psi(s,\eta) \not\equiv 0$ and $\psi(s,\eta)R(s,\eta) \in \mathcal{A}([-1,1] \times \overline{U})$. Putting $\tilde{\varphi}(s,\eta) := \psi(s,\eta)^2 R(s,\eta)$, we see that the roots of $P(t,s,\eta) = 0$ in t are all simple for $(s,\eta) \in \widetilde{V}_0 \equiv \{(s,\eta) \in V; \, \tilde{\varphi}(s,\eta) \neq 0\}$, modifying δ if necessary. This implies that the multiplicities of the roots of $p(t,s,\eta) = 0$ are constant for $(s,\eta) \in \widetilde{V}_0$ (see, also, Lemma in [W]). Choose $\tilde{\psi}(s,\eta) \in \mathcal{A}([-1,1] \times \overline{U})$ so that $\tilde{\psi}(s,\eta) \not\equiv 0$ and the coefficients of $\tilde{\psi}(s,\eta)P(t,s,\eta)$ belong to $\mathcal{A}([-1,1] \times \overline{U})$, and put $\varphi(s,\eta) = \tilde{\varphi}(s,\eta)\tilde{\psi}(s,\eta)$. We also modify $\delta > 0$ so that the coefficients of $\tilde{\psi}(s,\eta)P(t,s,\eta)$ and $\varphi(s,\eta)$ are analytic in V, if necessary. By the implicit function theorem there are analytic functions $t_k(s,\eta)$ ($1 \leq k \leq \bar{m}$) defined in $\hat{V} \equiv \{(s,\eta) \in V; \, \varphi(s,\eta) \neq 0 \text{ and } s \notin (-\infty,0)\}$ satisfying

$$P(t, s, \eta) = \prod_{k=1}^{\bar{m}} (t - t_k(s, \eta)),$$

where $\bar{m} = \deg_t P(t, s, \eta)$. So there are $r_k \in \{k_1, \dots, k_{\nu}\}$ ($1 \leq k \leq \bar{m}$) such that

$$p(t, s, \eta) = \prod_{k=1}^{\bar{m}} (t - t_k(s, \eta))^{r_k} \quad \text{for } (s, \eta) \in \widehat{V}.$$

Write

$$\varphi(s,\eta) = \sum_{j=l_0}^{\infty} \varphi_j(\eta) s^j$$

which converges in $V \cap \{|s| < \delta\}$, where $\varphi_{l_0}(\eta) \not\equiv 0$. Let U_0 be a connected open subset of \overline{U} satisfying $\varphi_{l_0}(\eta) \not\equiv 0$ for $\eta \in \overline{U}_0$. Modifying $\delta > 0$ we may assume that

$$\varphi(s,\eta) \neq 0$$
 in a neighborhood of $V_0 \equiv \{(s,\eta) \in \mathbf{C} \times \overline{U}_0; \ 0 < |s| < \delta\}.$

Then the $t_k(s,\eta)$ are analytic in a neighborhood of $V_0 \cap \{s \notin (-\infty,0)\}$. For a fixed $\eta \in \overline{U}_0$ analytic continuations in s of $t_k(s,\eta)$ around s=0 (crossing the negative real axis anti-clockwise) show that there are $\nu_k \equiv \nu_k(\eta) \in \mathbf{N}$ ($1 \leq k \leq \overline{m}$) such that

$$t_k(se^{2\pi\nu i}, \eta) \not\equiv t_k(s, \eta)$$
 in $s \in (0, \delta)$ if $\nu \in \mathbf{N}$ and $\nu < \nu_k$, $t_k(se^{2\pi\nu_k i}, \eta) = t_k(s, \eta)$ ($0 < s < \delta$).

Applying the same argument as in the proof of the monodromy theorem, we can prove that $\nu_k(\eta)$ does not depend on $\eta \in U_0$ (see, e.g., [A]). It

follows from Riemann's theorem on removable singularities that $t_k(z^{\nu_k}, \eta)$ ($1 \le k \le \bar{m}$) are (single-valued) analytic functions of (z, η) in $\{(z, \eta) \in \mathbf{C} \times \overline{U}_0; |z| < \delta^{1/\nu_k}\}$. Therefore, we have

$$t_k(z^{\nu_k}, \eta) = \sum_{j=0}^{\infty} t_{k,j}(\eta) z^j \quad (1 \le k \le \bar{m}),$$

in $\{(z,\eta) \in \mathbf{C} \times \overline{U}_0; |z| < \delta^{1/\nu_k}\}$, which are convergent, where the $t_{k,j}(\eta)$ are real analytic in \overline{U}_0 . This implies that the $t_k(s,\eta)$ can be expanded into Puiseux series in s which converge for $(s,\eta) \in (0,\delta) \times \overline{U}_0$, *i.e.*,

$$t_k(s,\eta) = \sum_{j=0}^{\infty} t_{k,j}(\eta) s^{j/\nu_k}$$
 for $(s,\eta) \in (0,\delta) \times \overline{U}_0$.

Thus we have the following

Theorem. There are $\varphi_0(\eta)(\not\equiv 0) \in \mathcal{A}(\overline{U})$, $\bar{m} \in \mathbb{N}$ and $r_k \in \mathbb{N}$ ($1 \leq k \leq \bar{m}$) satisfying the following:

For each connected open subset U_0 of \overline{U} satisfying $\varphi_0(\eta) \neq 0$ for $\eta \in \overline{U}_0$ there are $\delta > 0$ and $t_k(s, \eta) \in \mathcal{A}((0, \delta) \times \overline{U}_0)$ ($1 \leq k \leq \overline{m}$) such that

$$t_k(s,\eta) \neq t_l(s,\eta) \quad \text{for } (s,\eta) \in (0,\delta) \times \overline{U}_0 \quad \text{if } 1 \leq k < l \leq \overline{m},$$
$$p(t,s,\eta) = \prod_{k=1}^{\overline{m}} (t - t_k(s,\eta))^{r_k} \quad \text{for } (s,\eta) \in (0,\delta) \times \overline{U}_0$$

and the $t_k(s, \eta)$ can be expanded into Puiseux series in s which converge for $(s, \eta) \in (0, \delta) \times \overline{U}_0$, i.e.,

$$t_k(s,\eta) = \sum_{j=0}^{\infty} t_{k,j}(\eta) s^{j/\nu_k}$$
 for $(s,\eta) \in (0,\delta) \times \overline{U}_0$,

where $t_{k,j}(\eta) \in \mathcal{A}(\overline{U}_0)$ and $\nu_k \in \mathbb{N}$ ($1 \leq k \leq \overline{m}, j \in \mathbb{Z}_+$).

References

- [A] Lars V. Ahlfors, Comlex Analysis, Third Edition, 1979, McGraw-Hill Kogakusha, Ltd.
- [W] Seiichiro Wakabayashi, Asymptotic expansions of the roots of the equations of pseudo-polynomials with a small parameter, located in http://www.math.tsukuba.ac.jp/~wkbysh/.