Puiseux expansions of the roots of the equations of pseudo-polynomials with a small parameter

Seiichiro Wakabayashi

January 16, 2019

This note is a supplement to [W]. Let U be a non-void bounded open subset of \mathbf{R}^{n}, and let $m \in \mathbf{N}$ and $a_{j}(s, \eta) \in \mathcal{A}([-1,1] \times \bar{U})(0 \leq j \leq$ $m-1)$. Here $f(\eta) \in \mathcal{A}(\Omega)$ means that $f(\eta)$ is a real analytic function of η in a neighborhood of Ω, where $\Omega \subset \mathbf{R}^{n}$. We may assume that U is connected. Put $a_{m}(s, \eta) \equiv 1$. Since \bar{U} is compact, there is $\delta>0$ such that the $a_{j}(s, \eta)$ can be regarded as analytic functions defined in a neighborhood of $V \equiv\{(s, \eta) \in \mathbf{C} \times \bar{U}$; $\operatorname{Re} s \in(-1-\delta, 1+\delta)$ and $|\operatorname{Im} \delta|<\delta\}$. Define

$$
p(t, s, \eta)=\sum_{j=0}^{m} a_{j}(s, \eta) t^{j}
$$

Noting that $\mathcal{A}([-1,1] \times \bar{U})$ is an integral domain, we denote by \mathcal{K} its quotient field. Then we can write

$$
p(t, s, \eta)=p_{1}(t, s, \eta)^{k_{1}} \cdots p_{\nu}(t, s, \eta)^{k_{\nu}}
$$

where $p_{j}(t, s, \eta) \in \mathcal{K}[t](1 \leq j \leq \nu)$ are monic irreducible polynomials of t, $\operatorname{deg}_{t} p_{j}(t, s, \eta) \geq 1$ and the $p_{j}(t, s, \eta)$ are mutually prime in $\mathcal{K}[t]$. Put

$$
P(t, s, \eta)=p_{1}(t, s, \eta) \cdots p_{\nu}(t, s, \eta)
$$

and denote by $R(s, \eta)$ the discriminant of $P(t, s, \eta)=0$ in t, i.e., the resultant of $P(t, s, \eta)$ and $(\partial P / \partial t)(t, s, \eta)$ as polynomials of t. Then we have $R(s, \eta) \neq 0$ in \mathcal{K}, i.e., $R(s, \eta) \not \equiv 0$ in (s, η). Since $R(s, \eta) \in \mathcal{K}$, there
is $\psi(s, \eta) \in \mathcal{A}([-1,1] \times \bar{U})$ such that $\psi(s, \eta) \not \equiv 0$ and $\psi(s, \eta) R(s, \eta) \in$ $\mathcal{A}([-1,1] \times \bar{U})$. Putting $\tilde{\varphi}(s, \eta):=\psi(s, \eta)^{2} R(s, \eta)$, we see that the roots of $P(t, s, \eta)=0$ in t are all simple for $(s, \eta) \in \widetilde{V}_{0} \equiv\{(s, \eta) \in V ; \tilde{\varphi}(s, \eta) \neq 0\}$, modifying δ if necessary. This implies that the multiplicities of the roots of $p(t, s, \eta)=0$ are constant for $(s, \eta) \in \widetilde{V}_{0}$ (see, also, Lemma in [W]). Choose $\tilde{\psi}(s, \eta) \in \mathcal{A}([-1,1] \times \bar{U})$ so that $\tilde{\psi}(s, \eta) \not \equiv 0$ and the coefficients of $\tilde{\psi}(s, \eta) P(t, s, \eta)$ belong to $\mathcal{A}([-1,1] \times \bar{U})$, and put $\varphi(s, \eta)=\tilde{\varphi}(s, \eta) \tilde{\psi}(s, \eta)$. We also modify $\delta>0$ so that the coefficients of $\tilde{\psi}(s, \eta) P(t, s, \eta)$ and $\varphi(s, \eta)$ are analytic in V, if necessary. By the implicit function theorem there are analytic functions $t_{k}(s, \eta)(1 \leq k \leq \bar{m})$ defined in $\widehat{V} \equiv\{(s, \eta) \in$ $V ; \varphi(s, \eta) \neq 0$ and $s \notin(-\infty, 0)\}$ satisfying

$$
P(t, s, \eta)=\prod_{k=1}^{\bar{m}}\left(t-t_{k}(s, \eta)\right)
$$

where $\bar{m}=\operatorname{deg}_{t} P(t, s, \eta)$. So there are $r_{k} \in\left\{k_{1}, \cdots, k_{\nu}\right\}(1 \leq k \leq \bar{m})$ such that

$$
p(t, s, \eta)=\prod_{k=1}^{\bar{m}}\left(t-t_{k}(s, \eta)\right)^{r_{k}} \quad \text { for }(s, \eta) \in \widehat{V} .
$$

Write

$$
\varphi(s, \eta)=\sum_{j=l_{0}}^{\infty} \varphi_{j}(\eta) s^{j}
$$

which converges in $V \cap\{|s|<\delta\}$, where $\varphi_{l_{0}}(\eta) \not \equiv 0$. Let U_{0} be a connected open subset of \bar{U} satisfying $\varphi_{l_{0}}(\eta) \neq 0$ for $\eta \in \bar{U}_{0}$. Modifying $\delta>0$ we may assume that
$\varphi(s, \eta) \neq 0 \quad$ in a neighborhood of $V_{0} \equiv\left\{(s, \eta) \in \mathbf{C} \times \bar{U}_{0} ; 0<|s|<\delta\right\}$.
Then the $t_{k}(s, \eta)$ are analytic in a neighborhood of $V_{0} \cap\{s \notin(-\infty, 0)\}$. For a fixed $\eta \in \bar{U}_{0}$ analytic continuations in s of $t_{k}(s, \eta)$ around $s=0$ (crossing the negative real axis anti-clockwise) show that there are $\nu_{k} \equiv$ $\nu_{k}(\eta) \in \mathbf{N}(1 \leq k \leq \bar{m})$ such that

$$
\begin{aligned}
& t_{k}\left(s e^{2 \pi \nu i}, \eta\right) \not \equiv t_{k}(s, \eta) \quad \text { in } s \in(0, \delta) \quad \text { if } \nu \in \mathbf{N} \text { and } \nu<\nu_{k}, \\
& t_{k}\left(s e^{2 \pi \nu_{k} i}, \eta\right)=t_{k}(s, \eta) \quad(0<s<\delta) .
\end{aligned}
$$

Applying the same argument as in the proof of the monodromy theorem, we can prove that $\nu_{k}(\eta)$ does not depend on $\eta \in U_{0}$ (see, e.g., $[\mathrm{A}]$). It
follows from Riemann's theorem on removable singularities that $t_{k}\left(z^{\nu_{k}}, \eta\right)$ ($1 \leq k \leq \bar{m}$) are (single-valued) analytic functions of (z, η) in $\{(z, \eta) \in$ $\left.\mathbf{C} \times \bar{U}_{0} ;|z|<\delta^{1 / \nu_{k}}\right\}$. Therefore, we have

$$
t_{k}\left(z^{\nu_{k}}, \eta\right)=\sum_{j=0}^{\infty} t_{k, j}(\eta) z^{j} \quad(1 \leq k \leq \bar{m})
$$

in $\left\{(z, \eta) \in \mathbf{C} \times \bar{U}_{0} ;|z|<\delta^{1 / \nu_{k}}\right\}$, which are convergent, where the $t_{k, j}(\eta)$ are real analytic in \bar{U}_{0}. This implies that the $t_{k}(s, \eta)$ can be expanded into Puiseux series in s which converge for $(s, \eta) \in(0, \delta) \times \bar{U}_{0}$, i.e.,

$$
t_{k}(s, \eta)=\sum_{j=0}^{\infty} t_{k, j}(\eta) s^{j / \nu_{k}} \quad \text { for }(s, \eta) \in(0, \delta) \times \bar{U}_{0}
$$

Thus we have the following
Theorem. There are $\varphi_{0}(\eta)(\not \equiv 0) \in \mathcal{A}(\bar{U}), \bar{m} \in \mathbf{N}$ and $r_{k} \in \mathbf{N}$ ($1 \leq k \leq \bar{m}$) satisfying the following:
For each connected open subset U_{0} of \bar{U} satisfying $\varphi_{0}(\eta) \neq 0$ for $\eta \in \bar{U}_{0}$ there are $\delta>0$ and $t_{k}(s, \eta) \in \mathcal{A}\left((0, \delta) \times \bar{U}_{0}\right)(1 \leq k \leq \bar{m})$ such that

$$
\begin{aligned}
& t_{k}(s, \eta) \neq t_{l}(s, \eta) \quad \text { for }(s, \eta) \in(0, \delta) \times \bar{U}_{0} \quad \text { if } 1 \leq k<l \leq \bar{m} \\
& p(t, s, \eta)=\prod_{k=1}^{\bar{m}}\left(t-t_{k}(s, \eta)\right)^{r_{k}} \quad \text { for }(s, \eta) \in(0, \delta) \times \bar{U}_{0}
\end{aligned}
$$

and the $t_{k}(s, \eta)$ can be expanded into Puiseux series in s which converge for $(s, \eta) \in(0, \delta) \times \bar{U}_{0}$, i.e.,

$$
t_{k}(s, \eta)=\sum_{j=0}^{\infty} t_{k, j}(\eta) s^{j / \nu_{k}} \quad \text { for }(s, \eta) \in(0, \delta) \times \bar{U}_{0}
$$

where $t_{k, j}(\eta) \in \mathcal{A}\left(\bar{U}_{0}\right)$ and $\nu_{k} \in \mathbf{N}\left(1 \leq k \leq \bar{m}, j \in \mathbf{Z}_{+}\right)$.

References

[A] Lars V. Ahlfors, Comlex Analysis, Third Edition,1979, McGraw-Hill Kogakusha, Ltd.
[W] Seiichiro Wakabayashi, Asymptotic expansions of the roots of the equations of pseudo-polynomials with a small parameter, located in http://www.math.tsukuba.ac.jp/~wkbysh/.

