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This note is a supplement to [W]. In this note we slightly modify the definition
of semi-algebraic functions as follows.

Definition 1. (i) Let U be a semi-algebraic set in Rn, and let f (X) be a real-
valued function defined in U . We say that f (X) is semi-algebraic in U if the graph
of f ( = {(X ,y) ∈U ×R; y = f (X)}) is a semi-algebraic set.
(ii) Let X0 ∈Rn, and let f (X) be a real-valued function defined in a neighborhood
of X0. We say that f (X) is semi-algebraic at X0 if there is r > 0 such that f (X) is
semi-algebraic in Br(X0)≡ {X ∈ Rn; |X −X0|< r}.
(iii) When f (x) is a complex-valued function, we say that f (X) is semi-algebraic
in U ( resp. at X0) if Re f (X) and Im f (X) are semi-algebraic in U ( resp. at X0).

Lemma 2. Let m,n ∈ Z+, and let S and T be semi-algebraic sets in Rn+m.
For X ∈ Rn we define

T (X) = {Y ∈ Rn; (X ,Y ) ∈ T}.

Then the set
A ≡ {X ∈ Rn; (X ,Y ) ∈ S for ∀Y ∈ T (X)}

is a semi-algebraic set in Rn.

Remark. Let U be a semi-algebraic set in Rn. Then {X ∈ U ; (X ,Y ) ∈ S for
∀Y ∈ T (X)} is semi-algebraic.

Proof. We have

Ac(= Rn \A) = {X ∈ Rn; ∃Y ∈ T (X) s.t. (X ,Y ) ∈ Sc}
= {X ∈ Rn; ∃Y ∈ Rm s.t. (X ,Y ) ∈ T ∩Sc}.

From Lemma 2 in [W] T ∩ Sc is semi-algebraic. So the Tarski-Seidenberg The-
orem implies that Ac is semi-algebraic ( see, e.g., Theorem 3 in [W]). Thus A is
semi-algebraic.



Theorem 3. Let U be a semi-algebraic set in Rn, and let t(X) be a semi-
algebraic function in U satisfying t(X)> 0. Put

Ω = {(X , t) ∈U ×R; 0 < t < t(X)},

and let f (X , t) be a real-valued semi-algebraic function in Ω. If g(X) ≡ limt↓0
f (X , t) exists for X ∈U, then g(X) is semi-algebraic in U.

Proof. By definition G ≡ {(X , t,y) ∈ Ω×R; y = f (X , t)} is semi-algebraic.

A ={(X , t,y,ε,δ , f ) ∈ Rn+5; X ∈U, ε > 0, 0 < δ ≤ t(X),

0 < t < δ and (X , t, f ) ∈ G}.

Then A is semi-algebraic. For X ∈U , y ∈ R, ε > 0 and δ ∈ (0, t(X)] we define

A(X ,y,ε,δ ) = {(t, f ) ∈ R2; (X , t,y,ε,δ , f ) ∈ A}.

Moreover, we put

B = {(X ,y,ε,δ ) ∈ Rn+3; X ∈U, ε > 0, δ ∈ (0, t(X)] and

( f − y)2 ≤ ε2 for ∀(t, f ) ∈ A(X ,y,ε,δ )}
C = {(X ,y,ε) ∈ Rn+2; ∃δ ∈ R s.t. (X ,y,ε,δ ) ∈ B},
D = {(X ,y) ∈ Rn+1; (X ,y,ε) ∈C for ∀ε > 0}.

From Lemma 2 (or its remark) it follows that B is semi-algebraic and, therefore,
C is semi-algebraic by the Tarski-Seidenberg theorem. Moreover, it follows from
Corollary of Theorem 3 in [W] that D is semi-algebraic. On the other hand, we
have

D = {(X ,y) ∈ Rn+1; X ∈U and y = g(X)}.

Indeed, for each X ∈U and any ε > 0 there is δ > 0 such that

| f (X , t)− y|< ε for any t ∈ (0,δ )

and, therefore, y = g(X), if (X ,y) ∈ D. It is obvious that (X ,g(X)) ∈ D if X ∈U .
So g(X) is semi-algebraic in U .

Corollary. Let U be an open semi-algebraic set in Rn, and let f (X) be real-
valued and semi-algebraic in U. Assume that (∂/∂X1) f (X) exists for X ∈ U.
Then (∂/∂X1) f (X) is semi-algebraic in U.

Proof. Put
E = {(X ,δ ) ∈U × (0,1]; Bδ (X)⊂U}.
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It is obvious that E ∩{X}×R ̸= /0 for each X ∈ E. We define

t(X) = sup{δ ; (X ,δ ) ∈ E}.

t(X) is semi-algebraic in U ( see, e.g., Corollary A.2.4 of [H]). Put

f (X , t) =
1
t
( f (X + te1)− f (X)),

where e1 = (1,0, · · · ,0) ∈ Rn. Appying Theorem 3 we complete the proof, since
limt↓0 f (X , t) = (∂/∂X1) f (X).

Lemma 4. Let I be an interval of R, and let F(t) (̸≡ 0) be real analytic and
semi-algebraic in I. Then the set A ≡ {t ∈ I; F(t) = 0} is finite.

Proof. Since A is semi-algebraic, A is defined by a finite family {A j; 1 ≤ j ≤
M} of semi-algebraic subsets of R, where A j = {t ∈R; p j(t) = 0} or A j = {t ∈R;
p j(t)> 0} with polynomials p j(t)(̸≡ 0) ( 1 ≤ j ≤ M). Suppose that there is t0 ∈ A
satisfying p j(t0) ̸= 0 for any j. Then there is δ > 0 satisfying (t0−δ , t0+δ )⊂ A,
which contradicts discreteness of the set A. Therefore, we have

A ⊂
M∪

j=1

{t ∈ R; p j(t) = 0}

which implies that A is finite.

Theorem 5. Let I be an interval of R, and assume that a j(t) ∈ C∞(I) ( 1 ≤
j ≤ m) are semi-algebraic in I, where m ∈ N. If λ (t) ∈C(I) satisfies

λ (t)m +a1(t)λ (t)m−1 + · · ·+am(t) = 0 in I,

then λ (t) is semi-algebraic in I.

Proof. There are m′ ∈N and semi-algebraic functions ã j(t) in I ( 1 ≤ j ≤ m′)
such that the ã j(t) ∈C∞(I) and

(Reλ (t))m′
+ ã1(t)(Reλ (t))m′−1 + · · ·+ ãm′(t) = 0 in I.

Here the ã j(t) are given as polynomials of a1(t), a1(t), · · · , am(t), am(t). For
Imλ (t) we have the same. So we may assume that λ (t) is real-valued. Moreover,
we may assume that the a j(t) are real-valued. From the proof of Theorem 10 in
[W] we see that the a j(t) are real analytic in I. We define

B ={a(t); a(t) is a complex-valued semi-algebraic function
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defined in I and real analytic in I}.

It follows from Lemma 9 in [W] ( or its proof) that B is a subring of A (I), where
A (I) denotes the space of real analytic functions defined in I, We denote by B̃
the quotient field of B. Write

P(λ , t) = λ m +a1(t)λ m−1 + · · ·+am(t) ∈ B[λ ]⊂ B̃[λ ].

Then there are s ∈ N, m j ∈ N and irreducible polynomials Pj(λ , t) ∈ B̃[λ ] ( 1 ≤
j ≤ s) such that P1(λ , t), · · · , Ps(λ , t) are mutually prime and

P(λ , t) = P1(λ , t)m1 · · ·Ps(λ , t)ms.

We note that the Pj(λ , t) can be chosen in B[λ ] ( see, e.g., IV§6 of [L]). Put

Q(λ , t) = P1(λ , t) · · ·Ps(λ , t),

and denote by D(t) the discriminant of Q(λ , t) = 0 in λ . Then we have D(t) ̸≡ 0
in I, since Q(λ , t) and (∂/∂λ )Q(λ , t) are mutually prime. By Lemma 4 we can
write

{t ∈ I; D(t) = 0}= {τ1,τ2, · · · ,τN}, τ1 < τ2 < · · ·< τN .

Put

I0 = (−∞,τ1)∩ I, I1 = (τ1,τ2), · · · , IN−1 = (τN−1,τN), IN = (τN ,∞)∩ I.

Then Q(λ , t) = 0 in λ has only simple roots for 0 ≤ j ≤ N and t ∈ I j. We fix
j ∈ {0,1, · · · ,N}. For t ∈ I j we can write

Q(λ , t) =
m̂

∏
k=1

(λ −λ j,k(t)),

λ j,1(t)< λ j,2(t)< · · ·< λ j,r( j)(t), Imλ j,k(t) ̸= 0 ( r( j)+1 ≤ k ≤ m̂),

where m̂ = degλ Q(λ , t) and 1 ≤ r( j)≤ m̂. By assumption there is k( j) ∈ N such
that 1 ≤ k( j)≤ r( j) and λ (t) = λ j,k( j)(t) for t ∈ I j. Put

E = {(z, t,Q(z, t)) ∈ R3; t ∈ I}
Fj = {(t,y) ∈ I j ×R; ∃λ1, · · · ,λm̂ ∈ C s.t.(

z, t,
m̂

∏
k=1

(z−λk)
)
∈ E for ∀z ∈ R, λ1 < λ2 < · · ·< λr( j),

Imλk ̸= 0 ( r( j)+1 ≤ k ≤ m̂) and y = λ j,k( j)}.
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It is obvious that E and Fj are semi-algebraic and

Fj = {(t,y) ∈ I j ×R; y = λ (t)},

which implies that λ (t) is semi-algebraic in I j. Since
∪N

j=1{(τ j,λ (τ j))}∪
∪N

j=0 Fj
is semi-algebraic, λ (t) is semi-algebraic in I.

I could not prove Theorem 5 when I is an open connected semi-algebraic
subset of Rn. Under stronger assumptions we have the following

Theorem 6. Let U be an open semi-algebraic set in Rn, and assume that U is
connected, and that a j(X) ( 1 ≤ j ≤ m) are real analytic and semi-algebraic in U,
where m ∈ N. Put

P(λ ,X) = λ m +a1(X)λ m−1 + · · ·+am(X).

Then λ (X) is semi-algebraic in U if λ (X) is real analytic in U and P(λ (X),X)≡ 0
in U.

Proof. We may assume that λ (X) is real-valued and that the a j(X) are
real-valued ( see the proof of Theorem 5). Let X0 ∈ U , and denote by A the
set of germs of real analytic functions at X0. Then there are s ∈ N, m j ∈ N and
irreducible polynomials Pj(λ ,X) ∈ A [λ ] ( 1 ≤ j ≤ s) such that P1(λ ,X), · · · ,
Ps(λ ,X) are mutually prime and

P(λ ,X) = P1(λ ,X)m1 · · ·Ps(λ ,X)ms.

Put
Q(λ ,X) = P1(λ ,X) · · ·Ps(λ ,X),

and denote by D(X) the discriminant of Q(λ ,X) = 0 in λ . We choose a neigh-
borhood V of X0 in U so that D(X) is defined in V . Since D(X) ̸≡ 0 in V , there
are X1 ∈V and δ > 0 such that Bδ (X1)⊂V and D(X) ̸= 0 for X ∈ Bδ (X1). Then
Q(λ ,X) = 0 in λ has only simple roots for X ∈ Bδ (X1). For X ∈ Bδ (X1) we can
represent

Q(λ ,X) =
m̂

∏
k=1

(λ −λk(X)),

λ1(X)< λ2(X)< · · ·< λr(X), Imλk(X) ̸= 0 ( r+1 ≤ k ≤ m̂),

where m̂ = degλ Q(λ ,X) and 1 ≤ r ≤ m̂. By assumption there is k0 ∈ N such that
1 ≤ k0 ≤ r and λ (X) = λk0(X) in Bδ (X1). There are lk ∈N ( 1 ≤ k ≤ m̂) such that

P(λ ,X) =
m̂

∏
k=1

(λ −λk(X))lk for X ∈ Bδ (X
1).
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By Lemma 9 in [W] ( or its proof) E ≡ {(z,X ,P(z,X)) ∈ Rn+2; X ∈ Bδ (X1)} is
semi-algebraic. Define

F = {(X ,y) ∈ Bδ (X
1)×R; ∃λ1, · · · ,λm̂ ∈ C s.t.(

z,X ,
m̂

∏
k=1

(z−λk)
lk
)
∈ E for ∀z ∈ R, λ1 < λ2 < · · ·< λr,

Imλk ̸= 0 ( r+1 ≤ k ≤ m̂) and y = λk0}.

Then F is semi-algebraic and

F = {(X ,y) ∈ Bδ (X
1)×R; y = λ (X)},

which implies λ (X) is semi-algebraic at X1. It follows from Theorem 10 in [W]
( or its proof) that there is an irreducible polynomial P̃(z,X)(̸≡ 0) of (z,X) sat-
isfying P̃(λ (X),X) ≡ 0 near X1. Since λ (X) is real analytic in U , by analytic
continuation we have P̃(λ (X),X) ≡ 0 in U . Theorem 11 in [W] ( or its proof)
implies that λ (X) is semi-algebraic in U .
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