Remarks on semi-algebraic functions II

Seiichiro Wakabayashi

September 6, 2010

This note is a supplement to [W]. In this note we slightly modify the definition of semi-algebraic functions as follows.

Definition 1. (i) Let U be a semi-algebraic set in \mathbb{R}^{n}, and let $f(X)$ be a realvalued function defined in U. We say that $f(X)$ is semi-algebraic in U if the graph of $f(=\{(X, y) \in U \times \mathbb{R} ; y=f(X)\})$ is a semi-algebraic set.
(ii) Let $X^{0} \in \mathbb{R}^{n}$, and let $f(X)$ be a real-valued function defined in a neighborhood of X^{0}. We say that $f(X)$ is semi-algebraic at X^{0} if there is $r>0$ such that $f(X)$ is semi-algebraic in $B_{r}\left(X^{0}\right) \equiv\left\{X \in \mathbb{R}^{n} ;\left|X-X^{0}\right|<r\right\}$.
(iii) When $f(x)$ is a complex-valued function, we say that $f(X)$ is semi-algebraic in U (resp. at X^{0}) if $\operatorname{Re} f(X)$ and $\operatorname{Im} f(X)$ are semi-algebraic in U (resp. at X^{0}).

Lemma 2. Let $m, n \in \mathbb{Z}_{+}$, and let S and T be semi-algebraic sets in \mathbb{R}^{n+m}. For $X \in \mathbb{R}^{n}$ we define

$$
T(X)=\left\{Y \in \mathbb{R}^{n} ;(X, Y) \in T\right\} .
$$

Then the set

$$
A \equiv\left\{X \in \mathbb{R}^{n} ;(X, Y) \in S \text { for } \forall Y \in T(X)\right\}
$$

is a semi-algebraic set in \mathbb{R}^{n}.
Remark. Let U be a semi-algebraic set in \mathbb{R}^{n}. Then $\{X \in U ;(X, Y) \in S$ for $\forall Y \in T(X)\}$ is semi-algebraic.

Proof. We have

$$
\begin{aligned}
& A^{c}\left(=\mathbb{R}^{n} \backslash A\right)=\left\{X \in \mathbb{R}^{n} ; \exists Y \in T(X) \text { s.t. }(X, Y) \in S^{c}\right\} \\
& =\left\{X \in \mathbb{R}^{n} ; \exists Y \in \mathbb{R}^{m} \text { s.t. }(X, Y) \in T \cap S^{c}\right\} .
\end{aligned}
$$

From Lemma 2 in [W] $T \cap S^{c}$ is semi-algebraic. So the Tarski-Seidenberg Theorem implies that A^{c} is semi-algebraic (see, e.g., Theorem 3 in [W]). Thus A is semi-algebraic.

Theorem 3. Let U be a semi-algebraic set in \mathbb{R}^{n}, and let $t(X)$ be a semialgebraic function in U satisfying $t(X)>0$. Put

$$
\Omega=\{(X, t) \in U \times \mathbb{R} ; 0<t<t(X)\}
$$

and let $f(X, t)$ be a real-valued semi-algebraic function in Ω. If $g(X) \equiv \lim _{t \downarrow 0}$ $f(X, t)$ exists for $X \in U$, then $g(X)$ is semi-algebraic in U.

Proof. By definition $G \equiv\{(X, t, y) \in \Omega \times \mathbb{R} ; y=f(X, t)\}$ is semi-algebraic.

$$
\begin{aligned}
A=\{ & (X, t, y, \varepsilon, \delta, f) \in \mathbb{R}^{n+5} ; X \in U, \varepsilon>0,0<\delta \leq t(X), \\
& 0<t<\delta \text { and }(X, t, f) \in G\} .
\end{aligned}
$$

Then A is semi-algebraic. For $X \in U, y \in \mathbb{R}, \varepsilon>0$ and $\delta \in(0, t(X)]$ we define

$$
A(X, y, \varepsilon, \delta)=\left\{(t, f) \in \mathbb{R}^{2} ;(X, t, y, \varepsilon, \delta, f) \in A\right\} .
$$

Moreover, we put

$$
\begin{aligned}
& B=\{ (X, y, \varepsilon, \delta) \in \mathbb{R}^{n+3} ; X \in U, \varepsilon>0, \delta \in(0, t(X)] \text { and } \\
&\left.(f-y)^{2} \leq \varepsilon^{2} \text { for } \forall(t, f) \in A(X, y, \varepsilon, \delta)\right\} \\
& C=\left\{(X, y, \varepsilon) \in \mathbb{R}^{n+2} ; \exists \delta \in \mathbb{R} \text { s.t. }(X, y, \varepsilon, \delta) \in B\right\}, \\
& D=\left\{(X, y) \in \mathbb{R}^{n+1} ;(X, y, \varepsilon) \in C \text { for } \forall \varepsilon>0\right\} .
\end{aligned}
$$

From Lemma 2 (or its remark) it follows that B is semi-algebraic and, therefore, C is semi-algebraic by the Tarski-Seidenberg theorem. Moreover, it follows from Corollary of Theorem 3 in [W] that D is semi-algebraic. On the other hand, we have

$$
D=\left\{(X, y) \in \mathbb{R}^{n+1} ; X \in U \text { and } y=g(X)\right\} .
$$

Indeed, for each $X \in U$ and any $\varepsilon>0$ there is $\delta>0$ such that

$$
|f(X, t)-y|<\varepsilon \quad \text { for any } t \in(0, \delta)
$$

and, therefore, $y=g(X)$, if $(X, y) \in D$. It is obvious that $(X, g(X)) \in D$ if $X \in U$. So $g(X)$ is semi-algebraic in U.

Corollary. Let U be an open semi-algebraic set in \mathbb{R}^{n}, and let $f(X)$ be realvalued and semi-algebraic in U. Assume that $\left(\partial / \partial X_{1}\right) f(X)$ exists for $X \in U$. Then $\left(\partial / \partial X_{1}\right) f(X)$ is semi-algebraic in U.

Proof. Put

$$
E=\left\{(X, \delta) \in U \times(0,1] ; B_{\delta}(X) \subset U\right\}
$$

It is obvious that $E \cap\{X\} \times \mathbb{R} \neq \emptyset$ for each $X \in E$. We define

$$
t(X)=\sup \{\delta ;(X, \delta) \in E\}
$$

$t(X)$ is semi-algebraic in U (see, e.g., Corollary A.2.4 of [H]). Put

$$
f(X, t)=\frac{1}{t}\left(f\left(X+t e_{1}\right)-f(X)\right)
$$

where $e_{1}=(1,0, \cdots, 0) \in \mathbb{R}^{n}$. Appying Theorem 3 we complete the proof, since $\lim _{t \downarrow 0} f(X, t)=\left(\partial / \partial X_{1}\right) f(X)$.

Lemma 4. Let I be an interval of \mathbb{R}, and let $F(t)(\not \equiv 0)$ be real analytic and semi-algebraic in I. Then the set $A \equiv\{t \in I ; F(t)=0\}$ is finite.

Proof. Since A is semi-algebraic, A is defined by a finite family $\left\{A_{j} ; 1 \leq j \leq\right.$ $M\}$ of semi-algebraic subsets of \mathbb{R}, where $A_{j}=\left\{t \in \mathbb{R} ; p_{j}(t)=0\right\}$ or $A_{j}=\{t \in \mathbb{R}$; $\left.p_{j}(t)>0\right\}$ with polynomials $p_{j}(t)(\not \equiv 0)(1 \leq j \leq M)$. Suppose that there is $t_{0} \in A$ satisfying $p_{j}\left(t_{0}\right) \neq 0$ for any j. Then there is $\boldsymbol{\delta}>0$ satisfying $\left(t_{0}-\boldsymbol{\delta}, t_{0}+\boldsymbol{\delta}\right) \subset A$, which contradicts discreteness of the set A. Therefore, we have

$$
A \subset \bigcup_{j=1}^{M}\left\{t \in \mathbb{R} ; p_{j}(t)=0\right\}
$$

which implies that A is finite.
Theorem 5. Let I be an interval of \mathbb{R}, and assume that $a_{j}(t) \in C^{\infty}(I)(1 \leq$ $j \leq m)$ are semi-algebraic in I, where $m \in \mathbb{N}$. If $\lambda(t) \in C(I)$ satisfies

$$
\lambda(t)^{m}+a_{1}(t) \lambda(t)^{m-1}+\cdots+a_{m}(t)=0 \quad \text { in } I,
$$

then $\lambda(t)$ is semi-algebraic in I.
Proof. There are $m^{\prime} \in \mathbb{N}$ and semi-algebraic functions $\tilde{a}_{j}(t)$ in $I\left(1 \leq j \leq m^{\prime}\right)$ such that the $\tilde{a}_{j}(t) \in C^{\infty}(I)$ and

$$
(\operatorname{Re} \lambda(t))^{m^{\prime}}+\tilde{a}_{1}(t)(\operatorname{Re} \lambda(t))^{m^{\prime}-1}+\cdots+\tilde{a}_{m^{\prime}}(t)=0 \quad \text { in } I .
$$

Here the $\tilde{a}_{j}(t)$ are given as polynomials of $a_{1}(t), \overline{a_{1}(t)}, \cdots, a_{m}(t), \overline{a_{m}(t)}$. For $\operatorname{Im} \lambda(t)$ we have the same. So we may assume that $\lambda(t)$ is real-valued. Moreover, we may assume that the $a_{j}(t)$ are real-valued. From the proof of Theorem 10 in [W] we see that the $a_{j}(t)$ are real analytic in I. We define

$$
\mathscr{B}=\{a(t) ; a(t) \text { is a complex-valued semi-algebraic function }
$$

defined in I and real analytic in $I\}$.
It follows from Lemma 9 in [W] (or its proof) that \mathscr{B} is a subring of $\mathscr{A}(I)$, where $\mathscr{A}(I)$ denotes the space of real analytic functions defined in I, we denote by $\widetilde{\mathscr{B}}$ the quotient field of \mathscr{B}. Write

$$
P(\lambda, t)=\lambda^{m}+a_{1}(t) \lambda^{m-1}+\cdots+a_{m}(t) \in \mathscr{B}[\lambda] \subset \widetilde{\mathscr{B}}[\lambda] .
$$

Then there are $s \in \mathbb{N}, m_{j} \in \mathbb{N}$ and irreducible polynomials $P_{j}(\lambda, t) \in \widetilde{B}[\lambda](1 \leq$ $j \leq s)$ such that $P_{1}(\lambda, t), \cdots, P_{s}(\lambda, t)$ are mutually prime and

$$
P(\lambda, t)=P_{1}(\lambda, t)^{m_{1}} \cdots P_{s}(\lambda, t)^{m_{s}} .
$$

We note that the $P_{j}(\lambda, t)$ can be chosen in $\mathscr{B}[\lambda]$ (see, e.g., IV $\S 6$ of [L]). Put

$$
Q(\lambda, t)=P_{1}(\lambda, t) \cdots P_{s}(\lambda, t),
$$

and denote by $D(t)$ the discriminant of $Q(\lambda, t)=0$ in λ. Then we have $D(t) \not \equiv 0$ in I, since $Q(\lambda, t)$ and $(\partial / \partial \lambda) Q(\lambda, t)$ are mutually prime. By Lemma 4 we can write

$$
\{t \in I ; D(t)=0\}=\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right\}, \quad \tau_{1}<\tau_{2}<\cdots<\tau_{N} .
$$

Put

$$
I_{0}=\left(-\infty, \tau_{1}\right) \cap I, \quad I_{1}=\left(\tau_{1}, \tau_{2}\right), \cdots, \quad I_{N-1}=\left(\tau_{N-1}, \tau_{N}\right), \quad I_{N}=\left(\tau_{N}, \infty\right) \cap I .
$$

Then $Q(\lambda, t)=0$ in λ has only simple roots for $0 \leq j \leq N$ and $t \in I_{j}$. We fix $j \in\{0,1, \cdots, N\}$. For $t \in I_{j}$ we can write

$$
\begin{aligned}
& Q(\lambda, t)=\prod_{k=1}^{\hat{m}}\left(\lambda-\lambda_{j, k}(t)\right), \\
& \lambda_{j, 1}(t)<\lambda_{j, 2}(t)<\cdots<\lambda_{j, r(j)}(t), \quad \operatorname{Im} \lambda_{j, k}(t) \neq 0(r(j)+1 \leq k \leq \hat{m}),
\end{aligned}
$$

where $\hat{m}=\operatorname{deg}_{\lambda} Q(\lambda, t)$ and $1 \leq r(j) \leq \hat{m}$. By assumption there is $k(j) \in \mathbb{N}$ such that $1 \leq k(j) \leq r(j)$ and $\lambda(t)=\lambda_{j, k(j)}(t)$ for $t \in I_{j}$. Put

$$
\begin{aligned}
E= & \left\{(z, t, Q(z, t)) \in \mathbb{R}^{3} ; t \in I\right\} \\
F_{j}= & \left\{(t, y) \in I_{j} \times \mathbb{R} ; \exists \lambda_{1}, \cdots, \lambda_{\hat{m}} \in \mathbb{C}\right. \text { s.t. } \\
& \left(z, t, \prod_{k=1}^{\hat{m}}\left(z-\lambda_{k}\right)\right) \in E \text { for } \forall z \in \mathbb{R}, \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r(j)}, \\
& \left.\operatorname{Im} \lambda_{k} \neq 0(r(j)+1 \leq k \leq \hat{m}) \text { and } y=\lambda_{j, k(j)}\right\} .
\end{aligned}
$$

It is obvious that E and F_{j} are semi-algebraic and

$$
F_{j}=\left\{(t, y) \in I_{j} \times \mathbb{R} ; y=\lambda(t)\right\},
$$

which implies that $\lambda(t)$ is semi-algebraic in I_{j}. Since $\bigcup_{j=1}^{N}\left\{\left(\tau_{j}, \lambda\left(\tau_{j}\right)\right)\right\} \cup \bigcup_{j=0}^{N} F_{j}$ is semi-algebraic, $\lambda(t)$ is semi-algebraic in I.

I could not prove Theorem 5 when I is an open connected semi-algebraic subset of \mathbb{R}^{n}. Under stronger assumptions we have the following

Theorem 6. Let U be an open semi-algebraic set in \mathbb{R}^{n}, and assume that U is connected, and that $a_{j}(X)(1 \leq j \leq m)$ are real analytic and semi-algebraic in U, where $m \in \mathbb{N}$. Put

$$
P(\lambda, X)=\lambda^{m}+a_{1}(X) \lambda^{m-1}+\cdots+a_{m}(X) .
$$

Then $\lambda(X)$ is semi-algebraic in U if $\lambda(X)$ is real analytic in U and $P(\lambda(X), X) \equiv 0$ in U.

Proof. We may assume that $\lambda(X)$ is real-valued and that the $a_{j}(X)$ are real-valued (see the proof of Theorem 5). Let $X^{0} \in U$, and denote by \mathscr{A} the set of germs of real analytic functions at X^{0}. Then there are $s \in \mathbb{N}, m_{j} \in \mathbb{N}$ and irreducible polynomials $P_{j}(\lambda, X) \in \mathscr{A}[\lambda](1 \leq j \leq s)$ such that $P_{1}(\lambda, X), \cdots$, $P_{s}(\lambda, X)$ are mutually prime and

$$
P(\lambda, X)=P_{1}(\lambda, X)^{m_{1}} \cdots P_{s}(\lambda, X)^{m_{s}} .
$$

Put

$$
Q(\lambda, X)=P_{1}(\lambda, X) \cdots P_{s}(\lambda, X),
$$

and denote by $D(X)$ the discriminant of $Q(\lambda, X)=0$ in λ. We choose a neighborhood V of X^{0} in U so that $D(X)$ is defined in V. Since $D(X) \not \equiv 0$ in V, there are $X^{1} \in V$ and $\delta>0$ such that $B_{\delta}\left(X^{1}\right) \subset V$ and $D(X) \neq 0$ for $X \in B_{\delta}\left(X^{1}\right)$. Then $Q(\lambda, X)=0$ in λ has only simple roots for $X \in B_{\delta}\left(X^{1}\right)$. For $X \in B_{\delta}\left(X^{1}\right)$ we can represent

$$
\begin{aligned}
& Q(\lambda, X)=\prod_{k=1}^{\hat{m}}\left(\lambda-\lambda_{k}(X)\right), \\
& \lambda_{1}(X)<\lambda_{2}(X)<\cdots<\lambda_{r}(X), \quad \operatorname{Im} \lambda_{k}(X) \neq 0(r+1 \leq k \leq \hat{m}),
\end{aligned}
$$

where $\hat{m}=\operatorname{deg}_{\lambda} Q(\lambda, X)$ and $1 \leq r \leq \hat{m}$. By assumption there is $k_{0} \in \mathbb{N}$ such that $1 \leq k_{0} \leq r$ and $\lambda(X)=\lambda_{k_{0}}(X)$ in $B_{\delta}\left(X^{1}\right)$. There are $l_{k} \in \mathbb{N}(1 \leq k \leq \hat{m})$ such that

$$
P(\lambda, X)=\prod_{k=1}^{\hat{m}}\left(\lambda-\lambda_{k}(X)\right)^{l_{k}} \quad \text { for } X \in B_{\delta}\left(X^{1}\right) .
$$

By Lemma 9 in [W] (or its proof) $E \equiv\left\{(z, X, P(z, X)) \in \mathbb{R}^{n+2} ; X \in B_{\delta}\left(X^{1}\right)\right\}$ is semi-algebraic. Define

$$
\begin{aligned}
F=\{ & (X, y) \in B_{\delta}\left(X^{1}\right) \times \mathbb{R} ; \exists \lambda_{1}, \cdots, \lambda_{\hat{m}} \in \mathbb{C} \text { s.t. } \\
& \left(z, X, \prod_{k=1}^{\hat{m}}\left(z-\lambda_{k}\right)^{l_{k}}\right) \in E \text { for } \forall z \in \mathbb{R}, \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r}, \\
& \left.\operatorname{Im} \lambda_{k} \neq 0(r+1 \leq k \leq \hat{m}) \text { and } y=\lambda_{k_{0}}\right\} .
\end{aligned}
$$

Then F is semi-algebraic and

$$
F=\left\{(X, y) \in B_{\delta}\left(X^{1}\right) \times \mathbb{R} ; y=\lambda(X)\right\}
$$

which implies $\lambda(X)$ is semi-algebraic at X^{1}. It follows from Theorem 10 in [W] (or its proof) that there is an irreducible polynomial $\widetilde{P}(z, X)(\not \equiv 0)$ of (z, X) satisfying $\widetilde{P}(\lambda(X), X) \equiv 0$ near X^{1}. Since $\lambda(X)$ is real analytic in U, by analytic continuation we have $\widetilde{P}(\lambda(X), X) \equiv 0$ in U. Theorem 11 in [W] (or its proof) implies that $\lambda(X)$ is semi-algebraic in U.

References

[H] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[L] S. Lang, Undergraduate Algebra, Springer, 2004.
[W] S. Wakabayashi, Remarks on semi-algebraic functions, located in http://www.math.tsukuba.ac.jp/~wkbysh/.

