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In this note we shall give some facts and remarks concerning “semi-algebraic
functions” which we need in another paper. We think that the results given here
are all well-known, but we could not find any literature in which the main results
here ( Theorems 5, 10 and 11 below) are given and proved.

Definition 1. Let Sbe a subset ofRn. We say thatS is semi-algebraic ( or a
semi-algebraic set ( inRn)) if there is a finite family{A j,k}1≤ j≤m,1≤k≤r j of subsets
of Rn such that eachA j,k is defined by a real polynomial equation or inequality
and

S=
m∪

j=1

( r j∩
k=1

A j,k

)
.

Noting that
m∪

j=1

( r j∩
k=1

A j,k

)
=

r1∩
k1=1

· · ·
rm∩

km=1

( m∪
j=1

A j,k j

)
,

we have the following

Lemma 2. Let S1 and S2 be semi-algebraic sets inRn. Then Sc1(= Rn \S1),
S1∪S2 and S1∩S2 are semi-algebraic. Moreover, if T is a semi-algebraic set in
Rm, then S1×T is semi-algebraic.

The following theorem is called the Tarski-Seidenberg theorem ( see,e.g.,
§A.2 of [H]).

Theorem 3(Tarski-Seidenberg). Let S be a semi-algebraic set inRn+m. Then

S̃:= {x∈ Rn; (x,y) ∈ S for some y∈ Rm}

is semi-algebraic.



Corollary. Let S and T be semi-algebraic sets inRn+m andRm, respectively.
Then the set

Ŝ≡ {x∈ Rn; (x,y) ∈ S for any y∈ T}
is semi-algebraic.

Proof. Since

Ŝc(= Rn\ Ŝ) = {x∈ Rn; there isy∈ T satisfying(x,y) ∈ Sc}
= {x∈ Rn; there isy∈ Rm satisfying(x,y) ∈ Sc∩ (Rn×T)},

Theorem 3 and Lemma 2 prove the corollary.

Lemma 4. If S is a semi-algebraic set inRn, then the closureS of S and the

interior
◦
S of S are semi-algebraic.

Remark.If S= {x∈ R; x2(x−1) > 0}, thenS= (1,∞) andS ̸= {x∈ ; x2(x−
1) ≥ 0} = S∪{0}.

Proof. Put

D := {(x,ε,y) ∈ R2n+1; ε > 0, y∈ S,x∈ Rn and|x−y|2 < ε},
E := {(x,ε) ∈ Rn× (0,∞); there isy∈ Ssatisfying|x−y|2 < ε}.

ThenD is semi-algebraic and

E = {(x,ε) ∈ Rn+1; there isy∈ Ssatisfying(x,ε,y) ∈ D}.

From Theorem 3E is semi-algebraic. SinceS= {x ∈ Rn; (x,ε) ∈ E for any

ε > 0}, and
◦
S= (Rn\S)

c
, Sand

◦
Sare semi-algebraic.

Theorem 5. Let P(X) be a polynomial of X= (X1, · · · ,Xn), and put A≡ {X ∈
Rn; P(X) ̸= 0}. Then the number of the connected components of A is finite and
each component is semi-algebraic.

Proof. We may assume that the coefficients ofP(X) are real, replacingP(X)
by PRe(X)2 + PIm(X)2 if necessary, whereP(X) = PRe(X)+ iPIm(X) andPRe(X)
andPIm(X) are real polynomials. Let us prove the theorem by induction onn. If
n = 1, then the theorem is trivial. LetL ∈ N(= {1,2, · · ·}), and suppose that the
theorem is valid whenn≤ L. Let n = L+1. We can write

P(X) = P1(X)m1 · · ·Ps(X)ms,

where thePj(X) are irreducible polynomials and mutually prime. Put

Q(X) = P1(X) · · ·Ps(X),
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and denote byQ0(X) the principal part ( the terms of highest degree) ofP(X).
We may assume thatQ0(0, · · · ,0,1) ̸= 0, using linear transformation if necessary.
Let D(X′) be the discriminant of the equationQ(X′,Xn) = 0 in Xn, whereX′ =
(X1, · · · ,Xn−1). ThenD(X′) ̸≡ 0 and, by the assumption of induction, there are
N ∈ N and semi-algebraic setsA j in Rn−1 ( 1 ≤ j ≤ N) such that theA j are
mutually disjoint and coincide with the connected components of the set{X′ ∈
Rn−1; D(X′) ̸= 0}. For eachj ∈ N with 1≤ j ≤ N we can write

Q(X) = Q0(0, · · · ,0,1)
l

∏
k=1

(Xn−λk(X′)),

λ1(X′) < λ2(X′) < · · · < λr( j)(X
′), Imλk(X′) ̸= 0 ( r( j)+1≤ k≤ l)

for X′ ∈ A j , wherel = degXn
Q(X) andr( j) ∈ N, since the equationQ(X′,Xn) = 0

in Xn has only simple roots forX′ ∈ A j . Put

A j,k := {X ∈ A j ×R; there areλ1, · · · ,λr( j) ∈ R andλr( j)+1, · · ·λl ∈ C
such thatλ1 < λ2 < · · · < λr( j), Imλµ ̸= 0 ( µ = r( j)+1, · · · , l),

Q(X′, t) = Q0(0, · · · ,0,1)
l

∏
µ=1

(t −λµ) as a polynomial oft

andλk−1 < Xn < λk if 2 ≤ k≤ l , Xn < λ1 if k = 1,

andXn > λr( j) if k = r( j)+1} ( k = 1,2, · · · , r( j)+1).

Then theA j,k are semi-algebraic and

A∩ (A j ×R) =
r( j)+1∪

k=1

A j,k.

By Lemmas 2 and 4B j,k ≡ A j,k ∩A is semi-algebraic. Assume that there are
disjoint open subsetsC1 andC2 of B j,k satisfyingB j,k =C1∪C2 andC2∩A j,k ̸= /0.
SinceA j,k is connected,C1 ⊂ ∂A j,k∩A, where∂B denotes the boundary ofB in
Rn for a subsetB of Rn. So we haveC1 = /0. This implies thatB j,k are connected.

Since(A j ×R)∩A =
∪r( j)+1

k=1 B j,k, we have

A =
N∪

j=1

r( j)+1∪
k=1

B j,k.

Put
Λ := {( j,k) ∈ N×N; 1≤ j ≤ N, 1≤ k≤ r( j)+1}.
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For( j,k),( j ′,k′)∈Λ we say that( j,k)∼ ( j ′,k′) if there areν ∈N and( jµ ,kµ)∈Λ
( 1≤ µ ≤ ν) satisfyingB jµ ,kµ ∩B jµ+1,kµ+1 ̸= /0 ( 0≤ µ ≤ ν), where( j0,k0) = ( j,k)
and( jν+1,kν+1) = ( j ′,k′). For( j,k) ∈ Λ we put

A( j,k) :=
∪

( j ′,k′)∼( j,k)

B j ′,k′.

ThenA( j,k) is a connected component ofA and semi-algebraic. Moreover, we have
A =

∪
( j,k)∈Λ A( j,k), which proves the theorem.

Definition 6. Let f (X) be a real-valued function defined onRn. We say
that f (X) is semi-algebraic ( or a semi-algebraic function) if the graph off
( = {(X,y) ∈ Rn+1; y = f (X)}) is a semi-algebraic set.

Lemma 7. f (X) is semi-algebraic if and only if A≡ {(X,y) ∈ Rn+1; y ≤
f (X)} is a semi-algebraic set.

Proof. Assume thatf (X) is semi-algebraic. ThenB ≡ {(X,y,λ ) ∈ Rn+2;
λ = f (X) andy≤ λ} is a semi-algebraic set. Therefore, Theorem 3 implies that
A is semi-algebraic. Next assume thatA is semi-algebraic. ThenC≡ {(X,y,λ ) ∈
Rn+1; λ ≤ f (X) andy< λ} is semi-algebraic. Therefore, Theorem 3 implies that
D ≡ {(X,y) ∈ Rn+1; y < f (X)} is semi-algebraic. ThusA\D = {(X,y) ∈ Rn+1;
y = f (X)} is semi-algebraic.

Definition 8. (i) Let f (X) be a complex-valued function defined onRn. We
say that f (X) is semi-algebraic ( or a semi-algebraic function) if Ref (X) and
Im f (X) are semi-algebraic.

(ii) Let X0∈Rn, and letf (X) be a complex-valued function defined in a neigh-
borhood ofX0. We say thatf (X) is semi-algebraic atX0 if there isr > 0 such
that the sets{(X,y) ∈ Rn+1; |X−X0| < r andy = Re f (X)} and{(X,y) ∈ Rn+1;
|X−X0| < r andy = Im f (X)} are semi-algebraic.

(iii) Let U be an open subset ofRn, and letf (X) be a complex-valued function
defined inU . We say thatf (X) is semi-algebraic inU if f (X) is semi-algebraic
at everyX0 ∈U .

Lemma 9. Let X0 ∈ Rn, and let f(X) and g(X) be semi-algebraic( resp.
semi-algebraic at X0).

(i) α f (X)+ βg(X) and f(X)g(X) are semi-algebraic( resp. semi-algebraic
at X0), whereα,β ∈ C.

(ii) If g(X) ̸= 0 for X ∈ Rn ( resp. g(X) ̸= 0 in a neighborhood of X0), then
f (X)/g(X) is semi-algebraic( resp. semi-algebraic at X0).

(iii) If g(X) ≥ 0 for X ∈ Rn ( resp. g(X) ≥ 0 in a neighborhood of X0), then
g(X)1/l ( ≥ 0) is semi-algebraic( resp. semi-algebraic at X0), where l∈ N.
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Proof. Let us prove the first part of the assertion (i) in the case wheref (X)
andg(X) are semi-algebraic atX0. The other assertions can be proved by the same
argument. We may assume thatf (X) andg(X) are real-valued. By assumption
there isr > 0 such thatA ≡ {(X,λ ) ∈ Rn+1; |X −X0| < r andλ = f (X)} and
B≡ {(X,µ) ∈ Rn+1; |X−X0| < r andµ = g(X)} are semi-algebraic sets. Since

C := {(X,λ ,µ,y) ∈ Rn+3; |X−X0| < r, λ = f (X), µ = g(X)
andy = αλ +β µ}

is semi-algebraic, Theorem 3 implies thatα f (X)+βg(X) is semi-algebraic atX0.

Theorem 10.Let X0 ∈Rn, and assume that f(X) is in C∞ and semi-algebraic
( resp. semi-algebraic at X0). Then there is a irreducible polynomial P(z,X)(̸≡ 0)
of (z,X) = (z,X1, · · · ,Xn) satisfying P( f (X),X) ≡ 0 ( resp. P( f (X),X) = 0 in a
neighborhood of X0).

Proof. Let us prove the theorem in the case wheref (X) is semi-algebraic at
X0. We may assume thatf (X) is real-valued. By assumption there isr > 0 such
that f (X)∈C∞(Br(X0)) and the setS≡ {(X,y)∈ Br(X0)×R; y= f (X)} is semi-
algebraic, whereBr(X0) = {X ∈ Rn; |X−X0| < r}. First consider the case where
n= 1. LetF(z,X) be the product of all polynomialsFj,k(z,X), except polynomials
depending only onX, that appear in the definition of the semi-algebraic setS in
Definition 1 asA j,k = {(z,X) ∈ Rn+1; Fj,k(z,X) = 0 (resp.> 0)}. Then we have
F( f (X),X) = 0 in Br(X0) sinceS is a graph off (X). Write

F(z,X) = F1(z,X)m1 · · ·Fs(z,X)ms,

where theFj(z,X) are irreducible polynomials and mutually prime. We put

G(z,X) = F1(z,X) · · ·Fs(z,X)

and denote byD(X) the discriminant of the equationG(z,X) = 0 in z. Then
D(X) ̸≡ 0. Let X1 ∈ Br(X0), and assume thatD(X1) ̸= 0. Since the roots of
G(z,X1) = 0 in z are all simple,f (X) is analytic atX1, and there isj(X1) ∈ N
with 1≤ j(X1) ≤ s such thatFj(X1)( f (X),X) = 0 in a neighborhood ofX1. Next

assume thatD(X1) = 0. Then there isδ > 0 such thatD(X) ̸= 0 if 0 < |X−X1|<
δ . Moreover,f (X) is equal to a convergent Puiseux series if 0< ±(X−X1) < δ ,
respectively, modifyingδ if necessary. Sincef (X) is inC∞, the Puiseux series are
Taylor series and, therefore,f (X) is analytic atX1. So f (X) is analytic inBr(X0)
and there isj ∈ N with 1≤ j ≤ s such thatFj( f (X),X) = 0 in Br(X0). Next let
us consider the case wheren≥ 2. Similarly, there is a polynomialF(z,X) ( ̸≡ 0)
such thatF( f (X),X) = 0 in Br(X0). Write

F(z,X) = F1(z,X)m1 · · ·Fs(z,X)ms,
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where theFj(z,X) are irreducible polynomials and mutually prime. We put

G(z,X) = F1(z,X) · · ·Fs(z,X)

and denote byD(X) the discriminant of the equationG(z,X) = 0 in z. We have
D(X) ̸≡ 0. We may assume thatD0(0, · · · ,0,1) ̸= 0, whereD0(X) denotes the
principal part ofD(X), using linear transformation if necessary. IfD(X0) ̸=
0, then f (X) is analytic atX0 and we can choosej ∈ N with 1 ≤ j ≤ s so
that Fj( f (X),X) = 0 in a neighborhood ofX0. Now assume thatD(X0) = 0.
ChooseX1′ ∈ Rn−1 so that|X1′−X0′| < r, whereX0 = (X0

1 , · · · ,X0
n ) andX0′ =

(X0
1 , · · · ,X0

n−1). SinceD(X1′,Xn) ̸≡ 0 in Xn, applying the same argument for the
casen = 1, we can see thatf (X1′,Xn) is analytic inXn if (X1′,Xn) ∈ Br(X0)
and that there isj ∈ N with 1 ≤ j ≤ s satisfyingFj( f (X1′,Xn),X1′,Xn) = 0 if
(X1′,Xn) ∈ Br(X0). On the other hand, for each connected componentAk of
the set{X ∈ Rn; D(X) ̸= 0} there is j ≡ j(Ak) ∈ N with 1 ≤ j ≤ s satisfying
Fj( f (X),X) = 0 in Ak∩Br(X0). Therefore, there areδ > 0 and j ∈ N such that
1≤ j ≤ s andFj( f (X),X) = 0 if X ∈ Br(X0) and|X′−X0′| < δ .

Theorem 11. Let X0 ∈ Rn, and assume that f(X) is a continuous function
defined onRn ( resp. near X0). Moreover, we assume that there is a polynomial
P(z,X) ( ̸≡ 0) satisfying P( f (X),X)≡ 0 ( resp. P( f (X),X) = 0 in a neighborhood
of X0). Then f(X) is semi-algebraic( resp. semi-algebraic at X0).

Proof. Let us prove the theorem in the case wheref (X) is defined inBr(X0).
We may assume thatf (X) is real-valued and thatP(z,λ ) is a real polynomial.
Write

P(z,X) = P1(z,X)m1 · · ·Ps(z,X)ms,

where thePj(z,X) are irreducible and mutually prime. We put

Q(z,X) = P1(z,X) · · ·Ps(z,X)

and denote byD(X) the discriminant of the equationQ(z,X) = 0 in z. Then we
haveD(X) ̸≡ 0. PutA := {X ∈ Rn; D(X) ̸= 0}. It follows from Theorem 5 that
there are a finite number of semi-algebraic setsA1, · · · , AN in Rn such that theA j

are the disjoint connected components ofA andA=
∪N

j=1A j . For eachj ∈ N with
1 ≤ j ≤ N there arer( j) ∈ N with 1 ≤ r( j) ≤ m, a polynomialc(X) andλk(X)
defined inA j ( 1≤ k≤ m) such thatc(X) ̸= 0 and

Q(z,X) = c(X)
m

∏
k=1

(z−λk(X))

λ1(X) < λ2(X) < · · · < λr( j)(X), Imλk(X) ̸= 0 ( r( j)+1≤ k≤ m)
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for X ∈A j , wherem= degzQ(z,X). Let j ∈N satisfy 1≤ j ≤N andA j ∩Br(X0) ̸=
/0. Then there exists uniquelyk( j) ∈ N satisfying 1≤ k( j) ≤ r( j) andλk( j)(X) =
f (X) in A j ∩Br(X0). Put

E j := {(X,y) ∈ A j ×R; X ∈ Br(X0) and there area∈ R andλ1, · · · ,λm ∈ C

such thatQ(z,X) = a
m

∏
k=1

(z−λk), λ1 < · · · < λr( j),

Imλk ̸= 0 ( r( j)+1≤ k≤ m) andy = λk( j)}.

ThenE j is semi-algebraic and

E j = {(X,y) ∈ A j ×R; X ∈ Br(X0) andy = f (X)}.

Put
Ẽ j := {(X,y) ∈ A j ×R; X ∈ Br(X0) andy = f (X)}.

SinceẼ j = E j ∩Br(X0)×R, Ẽ j is semi-algebraic. SoE ≡
∪

j:A j∩Br (X0)̸= /0 Ẽ j is

semi-algebraic. Note that
∪N

j=1A j = Rn and thatA j ∩Br(X0) = /0 if A j ∩Br(X0) =
/0. Then we have

E = {(X,y) ∈ Br(X0)×R; y = f (X)}.
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