Remarks on semi-algebraic functions

Seiichiro Wakabayashi

April 5, 2008

the second version on August 30, 2010

In this note we shall give some facts and remarks concerning "semi-algebraic functions" which we need in another paper. We think that the results given here are all well-known, but we could not find any literature in which the main results here (Theorems 5, 10 and 11 below) are given and proved.

Definition 1. Let *S* be a subset of \mathbb{R}^n . We say that *S* is semi-algebraic (or a semi-algebraic set (in \mathbb{R}^n)) if there is a finite family $\{A_{j,k}\}_{1 \le j \le m, 1 \le k \le r_j}$ of subsets of \mathbb{R}^n such that each $A_{j,k}$ is defined by a real polynomial equation or inequality and

$$S = \bigcup_{j=1}^{m} \left(\bigcap_{k=1}^{r_j} A_{j,k} \right).$$

Noting that

$$\bigcup_{j=1}^{m} \left(\bigcap_{k=1}^{r_j} A_{j,k} \right) = \bigcap_{k_1=1}^{r_1} \cdots \bigcap_{k_m=1}^{r_m} \left(\bigcup_{j=1}^{m} A_{j,k_j} \right),$$

we have the following

Lemma 2. Let S_1 and S_2 be semi-algebraic sets in \mathbb{R}^n . Then $S_1^c (= \mathbb{R}^n \setminus S_1)$, $S_1 \cup S_2$ and $S_1 \cap S_2$ are semi-algebraic. Moreover, if T is a semi-algebraic set in \mathbb{R}^m , then $S_1 \times T$ is semi-algebraic.

The following theorem is called the Tarski-Seidenberg theorem (see, *e.g.*, \S A.2 of [H]).

Theorem 3 (Tarski-Seidenberg). Let S be a semi-algebraic set in \mathbb{R}^{n+m} . Then

$$S := \{x \in \mathbb{R}^n; (x, y) \in S \text{ for some } y \in \mathbb{R}^m\}$$

is semi-algebraic.

~ .

Corollary. Let S and T be semi-algebraic sets in \mathbb{R}^{n+m} and \mathbb{R}^m , respectively. Then the set

$$\widehat{S} \equiv \{x \in \mathbb{R}^n; (x, y) \in S \text{ for any } y \in T\}$$

is semi-algebraic.

Proof. Since

$$\widehat{S}^{c}(=\mathbb{R}^{n}\setminus\widehat{S}) = \{x\in\mathbb{R}^{n}; \text{ there is } y\in T \text{ satisfying } (x,y)\in S^{c}\}\$$
$$=\{x\in\mathbb{R}^{n}; \text{ there is } y\in\mathbb{R}^{m} \text{ satisfying } (x,y)\in S^{c}\cap(\mathbb{R}^{n}\times T)\},\$$

Theorem 3 and Lemma 2 prove the corollary.

Lemma 4. If S is a semi-algebraic set in \mathbb{R}^n , then the closure \overline{S} of S and the interior $\overset{\circ}{S}$ of S are semi-algebraic.

Remark. If $S = \{x \in \mathbb{R}; x^2(x-1) > 0\}$, then $S = (1, \infty)$ and $\overline{S} \neq \{x \in ; x^2(x-1) \ge 0\} = \overline{S} \cup \{0\}$.

Proof. Put

$$D := \{ (x, \varepsilon, y) \in \mathbb{R}^{2n+1}; \ \varepsilon > 0, \ y \in S, x \in \mathbb{R}^n \text{ and } |x-y|^2 < \varepsilon \},\$$
$$E := \{ (x, \varepsilon) \in \mathbb{R}^n \times (0, \infty); \text{ there is } y \in S \text{ satisfying } |x-y|^2 < \varepsilon \}.$$

Then D is semi-algebraic and

$$E = \{(x, \varepsilon) \in \mathbb{R}^{n+1}; \text{ there is } y \in S \text{ satisfying } (x, \varepsilon, y) \in D\}.$$

From Theorem 3 *E* is semi-algebraic. Since $\overline{S} = \{x \in \mathbb{R}^n; (x, \varepsilon) \in E \text{ for any } \varepsilon > 0\}$, and $\overset{\circ}{S} = \overline{(\mathbb{R}^n \setminus S)}^c$, \overline{S} and $\overset{\circ}{S}$ are semi-algebraic.

Theorem 5. Let P(X) be a polynomial of $X = (X_1, \dots, X_n)$, and put $A \equiv \{X \in \mathbb{R}^n; P(X) \neq 0\}$. Then the number of the connected components of A is finite and each component is semi-algebraic.

Proof. We may assume that the coefficients of P(X) are real, replacing P(X) by $P_{\text{Re}}(X)^2 + P_{\text{Im}}(X)^2$ if necessary, where $P(X) = P_{\text{Re}}(X) + iP_{\text{Im}}(X)$ and $P_{\text{Re}}(X)$ and $P_{\text{Im}}(X)$ are real polynomials. Let us prove the theorem by induction on *n*. If n = 1, then the theorem is trivial. Let $L \in \mathbb{N}(=\{1, 2, \dots\})$, and suppose that the theorem is valid when $n \leq L$. Let n = L + 1. We can write

$$P(X) = P_1(X)^{m_1} \cdots P_s(X)^{m_s},$$

where the $P_i(X)$ are irreducible polynomials and mutually prime. Put

$$Q(X) = P_1(X) \cdots P_s(X),$$

and denote by $Q^0(X)$ the principal part (the terms of highest degree) of P(X). We may assume that $Q^0(0, \dots, 0, 1) \neq 0$, using linear transformation if necessary. Let D(X') be the discriminant of the equation $Q(X', X_n) = 0$ in X_n , where $X' = (X_1, \dots, X_{n-1})$. Then $D(X') \neq 0$ and, by the assumption of induction, there are $N \in \mathbb{N}$ and semi-algebraic sets A_j in \mathbb{R}^{n-1} ($1 \leq j \leq N$) such that the A_j are mutually disjoint and coincide with the connected components of the set $\{X' \in \mathbb{R}^{n-1}; D(X') \neq 0\}$. For each $j \in \mathbb{N}$ with $1 \leq j \leq N$ we can write

$$Q(X) = Q^{0}(0, \dots, 0, 1) \prod_{k=1}^{l} (X_{n} - \lambda_{k}(X')),$$

$$\lambda_{1}(X') < \lambda_{2}(X') < \dots < \lambda_{r(j)}(X'), \quad \operatorname{Im} \lambda_{k}(X') \neq 0 \ (r(j) + 1 \le k \le l)$$

for $X' \in A_j$, where $l = \deg_{X_n} Q(X)$ and $r(j) \in \mathbb{N}$, since the equation $Q(X', X_n) = 0$ in X_n has only simple roots for $X' \in A_j$. Put

$$A_{j,k} := \{ X \in A_j \times \mathbb{R}; \text{ there are } \lambda_1, \cdots, \lambda_{r(j)} \in \mathbb{R} \text{ and } \lambda_{r(j)+1}, \cdots, \lambda_l \in \mathbb{C} \\ \text{ such that } \lambda_1 < \lambda_2 < \cdots < \lambda_{r(j)}, \text{ Im } \lambda_\mu \neq 0 \ (\mu = r(j) + 1, \cdots, l) \} \\ Q(X',t) = Q^0(0, \cdots, 0, 1) \prod_{\mu=1}^l (t - \lambda_\mu) \text{ as a polynomial of } t \\ \text{ and } \lambda_{k-1} < X_n < \lambda_k \text{ if } 2 \le k \le l, X_n < \lambda_1 \text{ if } k = 1, \\ \text{ and } X_n > \lambda_{r(j)} \text{ if } k = r(j) + 1 \} \qquad (k = 1, 2, \cdots, r(j) + 1).$$

Then the $A_{j,k}$ are semi-algebraic and

$$A \cap (A_j imes \mathbb{R}) = igcup_{k=1}^{r(j)+1} A_{j,k}.$$

By Lemmas 2 and 4 $B_{j,k} \equiv \overline{A_{j,k}} \cap A$ is semi-algebraic. Assume that there are disjoint open subsets C_1 and C_2 of $B_{j,k}$ satisfying $B_{j,k} = C_1 \cup C_2$ and $C_2 \cap A_{j,k} \neq \emptyset$. Since $A_{j,k}$ is connected, $C_1 \subset \partial A_{j,k} \cap A$, where ∂B denotes the boundary of B in \mathbb{R}^n for a subset B of \mathbb{R}^n . So we have $C_1 = \emptyset$. This implies that $B_{j,k}$ are connected. Since $\overline{(A_j \times \mathbb{R})} \cap A = \bigcup_{k=1}^{r(j)+1} B_{j,k}$, we have

$$A = \bigcup_{j=1}^{N} \bigcup_{k=1}^{r(j)+1} B_{j,k}.$$

Put

$$\Lambda := \{ (j,k) \in \mathbb{N} \times \mathbb{N}; \ 1 \le j \le N, \ 1 \le k \le r(j) + 1 \}.$$

For $(j,k), (j',k') \in \Lambda$ we say that $(j,k) \sim (j',k')$ if there are $v \in \mathbb{N}$ and $(j_{\mu},k_{\mu}) \in \Lambda$ $(1 \leq \mu \leq v)$ satisfying $B_{j_{\mu},k_{\mu}} \cap B_{j_{\mu+1},k_{\mu+1}} \neq \emptyset$ $(0 \leq \mu \leq v)$, where $(j_0,k_0) = (j,k)$ and $(j_{\nu+1},k_{\nu+1}) = (j',k')$. For $(j,k) \in \Lambda$ we put

$$A_{(j,k)} := \bigcup_{(j',k') \sim (j,k)} B_{j',k'}.$$

Then $A_{(j,k)}$ is a connected component of *A* and semi-algebraic. Moreover, we have $A = \bigcup_{(i,k) \in \Lambda} A_{(j,k)}$, which proves the theorem.

Definition 6. Let f(X) be a real-valued function defined on \mathbb{R}^n . We say that f(X) is semi-algebraic (or a semi-algebraic function) if the graph of f ($= \{(X, y) \in \mathbb{R}^{n+1}; y = f(X)\}$) is a semi-algebraic set.

Lemma 7. f(X) is semi-algebraic if and only if $A \equiv \{(X, y) \in \mathbb{R}^{n+1}; y \leq f(X)\}$ is a semi-algebraic set.

Proof. Assume that f(X) is semi-algebraic. Then $B \equiv \{(X, y, \lambda) \in \mathbb{R}^{n+2}; \lambda = f(X) \text{ and } y \leq \lambda\}$ is a semi-algebraic set. Therefore, Theorem 3 implies that *A* is semi-algebraic. Next assume that *A* is semi-algebraic. Then $C \equiv \{(X, y, \lambda) \in \mathbb{R}^{n+1}; \lambda \leq f(X) \text{ and } y < \lambda\}$ is semi-algebraic. Therefore, Theorem 3 implies that $D \equiv \{(X, y) \in \mathbb{R}^{n+1}; y < f(X)\}$ is semi-algebraic. Thus $A \setminus D = \{(X, y) \in \mathbb{R}^{n+1}; y = f(X)\}$ is semi-algebraic.

Definition 8. (i) Let f(X) be a complex-valued function defined on \mathbb{R}^n . We say that f(X) is semi-algebraic (or a semi-algebraic function) if $\operatorname{Re} f(X)$ and $\operatorname{Im} f(X)$ are semi-algebraic.

(ii) Let $X^0 \in \mathbb{R}^n$, and let f(X) be a complex-valued function defined in a neighborhood of X^0 . We say that f(X) is semi-algebraic at X^0 if there is r > 0 such that the sets $\{(X, y) \in \mathbb{R}^{n+1}; |X - X^0| < r \text{ and } y = \operatorname{Re} f(X)\}$ and $\{(X, y) \in \mathbb{R}^{n+1}; |X - X^0| < r \text{ and } y = \operatorname{Re} f(X)\}$ and $\{(X, y) \in \mathbb{R}^{n+1}; |X - X^0| < r \text{ and } y = \operatorname{Im} f(X)\}$ are semi-algebraic.

(iii) Let U be an open subset of \mathbb{R}^n , and let f(X) be a complex-valued function defined in U. We say that f(X) is semi-algebraic in U if f(X) is semi-algebraic at every $X^0 \in U$.

Lemma 9. Let $X^0 \in \mathbb{R}^n$, and let f(X) and g(X) be semi-algebraic (resp. semi-algebraic at X^0).

(i) $\alpha f(X) + \beta g(X)$ and f(X)g(X) are semi-algebraic (resp. semi-algebraic at X^0), where $\alpha, \beta \in \mathbb{C}$.

(ii) If $g(X) \neq 0$ for $X \in \mathbb{R}^n$ (resp. $g(X) \neq 0$ in a neighborhood of X^0), then f(X)/g(X) is semi-algebraic (resp. semi-algebraic at X^0).

(iii) If $g(X) \ge 0$ for $X \in \mathbb{R}^n$ (resp. $g(X) \ge 0$ in a neighborhood of X^0), then $g(X)^{1/l}$ (≥ 0) is semi-algebraic (resp. semi-algebraic at X^0), where $l \in \mathbb{N}$.

Proof. Let us prove the first part of the assertion (i) in the case where f(X) and g(X) are semi-algebraic at X^0 . The other assertions can be proved by the same argument. We may assume that f(X) and g(X) are real-valued. By assumption there is r > 0 such that $A \equiv \{(X, \lambda) \in \mathbb{R}^{n+1}; |X - X^0| < r \text{ and } \lambda = f(X)\}$ and $B \equiv \{(X, \mu) \in \mathbb{R}^{n+1}; |X - X^0| < r \text{ and } \mu = g(X)\}$ are semi-algebraic sets. Since

$$C := \{ (X, \lambda, \mu, y) \in \mathbb{R}^{n+3}; |X - X^0| < r, \ \lambda = f(X), \ \mu = g(X)$$

and $y = \alpha \lambda + \beta \mu \}$

is semi-algebraic, Theorem 3 implies that $\alpha f(X) + \beta g(X)$ is semi-algebraic at X^0 .

Theorem 10. Let $X^0 \in \mathbb{R}^n$, and assume that f(X) is in C^{∞} and semi-algebraic (resp. semi-algebraic at X^0). Then there is a irreducible polynomial $P(z,X) (\neq 0)$ of $(z,X) = (z,X_1,\dots,X_n)$ satisfying $P(f(X),X) \equiv 0$ (resp. P(f(X),X) = 0 in a neighborhood of X^0).

Proof. Let us prove the theorem in the case where f(X) is semi-algebraic at X^0 . We may assume that f(X) is real-valued. By assumption there is r > 0 such that $f(X) \in C^{\infty}(B_r(X^0))$ and the set $S \equiv \{(X, y) \in B_r(X^0) \times \mathbb{R}; y = f(X)\}$ is semi-algebraic, where $B_r(X^0) = \{X \in \mathbb{R}^n; |X - X^0| < r\}$. First consider the case where n = 1. Let F(z, X) be the product of all polynomials $F_{j,k}(z, X)$, except polynomials depending only on X, that appear in the definition of the semi-algebraic set S in Definition 1 as $A_{j,k} = \{(z, X) \in \mathbb{R}^{n+1}; F_{j,k}(z, X) = 0 \text{ (resp. > 0)}\}$. Then we have F(f(X), X) = 0 in $B_r(X^0)$ since S is a graph of f(X). Write

$$F(z,X) = F_1(z,X)^{m_1} \cdots F_s(z,X)^{m_s},$$

where the $F_i(z,X)$ are irreducible polynomials and mutually prime. We put

$$G(z,X) = F_1(z,X) \cdots F_s(z,X)$$

and denote by D(X) the discriminant of the equation G(z,X) = 0 in z. Then $D(X) \neq 0$. Let $X^1 \in B_r(X^0)$, and assume that $D(X^1) \neq 0$. Since the roots of $G(z,X^1) = 0$ in z are all simple, f(X) is analytic at X^1 , and there is $j(X^1) \in \mathbb{N}$ with $1 \leq j(X^1) \leq s$ such that $F_{j(X^1)}(f(X),X) = 0$ in a neighborhood of X^1 . Next assume that $D(X^1) = 0$. Then there is $\delta > 0$ such that $D(X) \neq 0$ if $0 < |X - X^1| < \delta$. Moreover, f(X) is equal to a convergent Puiseux series if $0 < \pm (X - X^1) < \delta$, respectively, modifying δ if necessary. Since f(X) is in C^{∞} , the Puiseux series are Taylor series and, therefore, f(X) is analytic at X^1 . So f(X) is analytic in $B_r(X^0)$ and there is $j \in \mathbb{N}$ with $1 \leq j \leq s$ such that $F_j(f(X),X) = 0$ in $B_r(X^0)$. Next let us consider the case where $n \geq 2$. Similarly, there is a polynomial F(z,X) ($\neq 0$) such that F(f(X),X) = 0 in $B_r(X^0)$. Write

$$F(z,X) = F_1(z,X)^{m_1} \cdots F_s(z,X)^{m_s},$$

where the $F_i(z,X)$ are irreducible polynomials and mutually prime. We put

$$G(z,X) = F_1(z,X) \cdots F_s(z,X)$$

and denote by D(X) the discriminant of the equation G(z,X) = 0 in z. We have $D(X) \neq 0$. We may assume that $D^0(0, \dots, 0, 1) \neq 0$, where $D^0(X)$ denotes the principal part of D(X), using linear transformation if necessary. If $D(X^0) \neq 0$, then f(X) is analytic at X^0 and we can choose $j \in \mathbb{N}$ with $1 \leq j \leq s$ so that $F_j(f(X),X) = 0$ in a neighborhood of X^0 . Now assume that $D(X^0) = 0$. Choose $X^{1'} \in \mathbb{R}^{n-1}$ so that $|X^{1'} - X^{0'}| < r$, where $X^0 = (X_1^0, \dots, X_n^0)$ and $X^{0'} = (X_1^0, \dots, X_{n-1}^0)$. Since $D(X^{1'}, X_n) \neq 0$ in X_n , applying the same argument for the case n = 1, we can see that $f(X^{1'}, X_n)$ is analytic in X_n if $(X^{1'}, X_n) \in B_r(X^0)$ and that there is $j \in \mathbb{N}$ with $1 \leq j \leq s$ satisfying $F_j(f(X^{1'}, X_n), X^{1'}, X_n) = 0$ if $(X^{1'}, X_n) \in B_r(X^0)$. On the other hand, for each connected component A_k of the set $\{X \in \mathbb{R}^n; D(X) \neq 0\}$ there is $j \equiv j(A_k) \in \mathbb{N}$ with $1 \leq j \leq s$ satisfying $F_j(f(X), X) = 0$ in $A_k \cap B_r(X^0)$. Therefore, there are $\delta > 0$ and $j \in \mathbb{N}$ such that $1 \leq j \leq s$ and $F_j(f(X), X) = 0$ if $X \in B_r(X^0)$ and $|X' - X^{0'}| < \delta$.

Theorem 11. Let $X^0 \in \mathbb{R}^n$, and assume that f(X) is a continuous function defined on \mathbb{R}^n (resp. near X^0). Moreover, we assume that there is a polynomial P(z,X) ($\neq 0$) satisfying $P(f(X),X) \equiv 0$ (resp. P(f(X),X) = 0 in a neighborhood of X^0). Then f(X) is semi-algebraic (resp. semi-algebraic at X^0).

Proof. Let us prove the theorem in the case where f(X) is defined in $B_r(X^0)$. We may assume that f(X) is real-valued and that $P(z,\lambda)$ is a real polynomial. Write

$$P(z,X) = P_1(z,X)^{m_1} \cdots P_s(z,X)^{m_s},$$

where the $P_i(z, X)$ are irreducible and mutually prime. We put

$$Q(z,X) = P_1(z,X) \cdots P_s(z,X)$$

and denote by D(X) the discriminant of the equation Q(z,X) = 0 in z. Then we have $D(X) \neq 0$. Put $A := \{X \in \mathbb{R}^n; D(X) \neq 0\}$. It follows from Theorem 5 that there are a finite number of semi-algebraic sets A_1, \dots, A_N in \mathbb{R}^n such that the A_j are the disjoint connected components of A and $A = \bigcup_{j=1}^N A_j$. For each $j \in \mathbb{N}$ with $1 \leq j \leq N$ there are $r(j) \in \mathbb{N}$ with $1 \leq r(j) \leq m$, a polynomial c(X) and $\lambda_k(X)$ defined in A_j ($1 \leq k \leq m$) such that $c(X) \neq 0$ and

$$Q(z,X) = c(X) \prod_{k=1}^{m} (z - \lambda_k(X))$$

$$\lambda_1(X) < \lambda_2(X) < \dots < \lambda_{r(j)}(X), \quad \operatorname{Im} \lambda_k(X) \neq 0 \ (r(j) + 1 \le k \le m)$$

for $X \in A_j$, where $m = \deg_z Q(z, X)$. Let $j \in \mathbb{N}$ satisfy $1 \le j \le N$ and $A_j \cap B_r(X^0) \ne \emptyset$. \emptyset . Then there exists uniquely $k(j) \in \mathbb{N}$ satisfying $1 \le k(j) \le r(j)$ and $\lambda_{k(j)}(X) = f(X)$ in $A_j \cap B_r(X^0)$. Put

$$E_j := \{ (X, y) \in A_j \times \mathbb{R}; X \in B_r(X^0) \text{ and there are } a \in \mathbb{R} \text{ and } \lambda_1, \cdots, \lambda_m \in \mathbb{C}$$
such that $Q(z, X) = a \prod_{k=1}^m (z - \lambda_k), \ \lambda_1 < \cdots < \lambda_{r(j)},$
$$\operatorname{Im} \lambda_k \neq 0 \ (r(j) + 1 \le k \le m) \text{ and } y = \lambda_{k(j)} \}.$$

Then E_j is semi-algebraic and

$$E_j = \{(X, y) \in A_j \times \mathbb{R}; X \in B_r(X^0) \text{ and } y = f(X)\}.$$

Put

$$\widetilde{E}_j := \{ (X, y) \in \overline{A_j} \times \mathbb{R}; X \in B_r(X^0) \text{ and } y = f(X) \}.$$

Since $\widetilde{E}_j = \overline{E_j} \cap B_r(X^0) \times \mathbb{R}$, \widetilde{E}_j is semi-algebraic. So $E \equiv \bigcup_{j:A_j \cap B_r(X^0) \neq \emptyset} \widetilde{E}_j$ is semi-algebraic. Note that $\bigcup_{j=1}^N \overline{A_j} = \mathbb{R}^n$ and that $\overline{A_j} \cap B_r(X^0) = \emptyset$ if $A_j \cap B_r(X^0) = \emptyset$. Then we have

$$E = \{ (X, y) \in B_r(X^0) \times \mathbb{R}; y = f(X) \}.$$

References

[H] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.