Remarks on semi-algebraic functions

Seiichiro Wakabayashi

April 5, 2008
the second version on August 30, 2010
In this note we shall give some facts and remarks concerning "semi-algebraic functions" which we need in another paper. We think that the results given here are all well-known, but we could not find any literature in which the main results here (Theorems 5, 10 and 11 below) are given and proved.

Definition 1. Let S be a subset of \mathbb{R}^{n}. We say that S is semi-algebraic (or a semi-algebraic set (in \mathbb{R}^{n})) if there is a finite family $\left\{A_{j, k}\right\}_{1 \leq j \leq m, 1 \leq k \leq r_{j}}$ of subsets of \mathbb{R}^{n} such that each $A_{j, k}$ is defined by a real polynomial equation or inequality and

$$
S=\bigcup_{j=1}^{m}\left(\bigcap_{k=1}^{r_{j}} A_{j, k}\right) .
$$

Noting that

$$
\bigcup_{j=1}^{m}\left(\bigcap_{k=1}^{r_{j}} A_{j, k}\right)=\bigcap_{k_{1}=1}^{r_{1}} \cdots \bigcap_{k_{m}=1}^{r_{m}}\left(\bigcup_{j=1}^{m} A_{j, k_{j}}\right)
$$

we have the following
Lemma 2. Let S_{1} and S_{2} be semi-algebraic sets in \mathbb{R}^{n}. Then $S_{1}^{c}\left(=\mathbb{R}^{n} \backslash S_{1}\right)$, $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$ are semi-algebraic. Moreover, if T is a semi-algebraic set in \mathbb{R}^{m}, then $S_{1} \times T$ is semi-algebraic.

The following theorem is called the Tarski-Seidenberg theorem (see, e.g., §A. 2 of $[\mathrm{H}]$).

Theorem 3 (Tarski-Seidenberg). Let S be a semi-algebraic set in \mathbb{R}^{n+m}. Then

$$
\widetilde{S}:=\left\{x \in \mathbb{R}^{n} ;(x, y) \in S \text { for some } y \in \mathbb{R}^{m}\right\}
$$

is semi-algebraic.

Corollary. Let S and T be semi-algebraic sets in \mathbb{R}^{n+m} and \mathbb{R}^{m}, respectively. Then the set

$$
\widehat{S} \equiv\left\{x \in \mathbb{R}^{n} ; \quad(x, y) \in S \text { for any } y \in T\right\}
$$

is semi-algebraic.
Proof. Since

$$
\begin{aligned}
& \widehat{S}^{c}\left(=\mathbb{R}^{n} \backslash \widehat{S}\right)=\left\{x \in \mathbb{R}^{n} ; \text { there is } y \in T \text { satisfying }(x, y) \in S^{c}\right\} \\
& =\left\{x \in \mathbb{R}^{n} ; \text { there is } y \in \mathbb{R}^{m} \text { satisfying }(x, y) \in S^{c} \cap\left(\mathbb{R}^{n} \times T\right)\right\},
\end{aligned}
$$

Theorem 3 and Lemma 2 prove the corollary.
Lemma 4. If S is a semi-algebraic set in \mathbb{R}^{n}, then the closure \bar{S} of S and the interior $\stackrel{\circ}{S}^{\circ}$ of S are semi-algebraic.

Remark. If $S=\left\{x \in \mathbb{R} ; x^{2}(x-1)>0\right\}$, then $S=(1, \infty)$ and $\bar{S} \neq\left\{x \in ; x^{2}(x-\right.$ 1) $\geq 0\}=\bar{S} \cup\{0\}$.

Proof. Put

$$
\begin{aligned}
& D:=\left\{(x, \varepsilon, y) \in \mathbb{R}^{2 n+1} ; \varepsilon>0, y \in S, x \in \mathbb{R}^{n} \text { and }|x-y|^{2}<\varepsilon\right\} \\
& E:=\left\{(x, \varepsilon) \in \mathbb{R}^{n} \times(0, \infty) ; \text { there is } y \in S \text { satisfying }|x-y|^{2}<\varepsilon\right\} .
\end{aligned}
$$

Then D is semi-algebraic and

$$
E=\left\{(x, \varepsilon) \in \mathbb{R}^{n+1} ; \text { there is } y \in S \text { satisfying }(x, \varepsilon, y) \in D\right\}
$$

From Theorem $3 E$ is semi-algebraic. Since $\bar{S}=\left\{x \in \mathbb{R}^{n} ;(x, \varepsilon) \in E\right.$ for any $\varepsilon>0\}$, and $\stackrel{\circ}{S}={\overline{\left(\mathbb{R}^{n} \backslash S\right)}}^{c}, \bar{S}$ and $\stackrel{\circ}{S}$ are semi-algebraic.

Theorem 5. Let $P(X)$ be a polynomial of $X=\left(X_{1}, \cdots, X_{n}\right)$, and put $A \equiv\{X \in$ $\left.\mathbb{R}^{n} ; P(X) \neq 0\right\}$. Then the number of the connected components of A is finite and each component is semi-algebraic.

Proof. We may assume that the coefficients of $P(X)$ are real, replacing $P(X)$ by $P_{\mathrm{Re}}(X)^{2}+P_{\mathrm{Im}}(X)^{2}$ if necessary, where $P(X)=P_{\mathrm{Re}}(X)+i P_{\mathrm{Im}}(X)$ and $P_{\mathrm{Re}}(X)$ and $P_{\operatorname{Im}}(X)$ are real polynomials. Let us prove the theorem by induction on n. If $n=1$, then the theorem is trivial. Let $L \in \mathbb{N}(=\{1,2, \cdots\})$, and suppose that the theorem is valid when $n \leq L$. Let $n=L+1$. We can write

$$
P(X)=P_{1}(X)^{m_{1}} \cdots P_{s}(X)^{m_{s}},
$$

where the $P_{j}(X)$ are irreducible polynomials and mutually prime. Put

$$
Q(X)=P_{1}(X) \cdots P_{s}(X),
$$

and denote by $Q^{0}(X)$ the principal part (the terms of highest degree) of $P(X)$. We may assume that $Q^{0}(0, \cdots, 0,1) \neq 0$, using linear transformation if necessary. Let $D\left(X^{\prime}\right)$ be the discriminant of the equation $Q\left(X^{\prime}, X_{n}\right)=0$ in X_{n}, where $X^{\prime}=$ $\left(X_{1}, \cdots, X_{n-1}\right)$. Then $D\left(X^{\prime}\right) \not \equiv 0$ and, by the assumption of induction, there are $N \in \mathbb{N}$ and semi-algebraic sets A_{j} in $\mathbb{R}^{n-1}(1 \leq j \leq N)$ such that the A_{j} are mutually disjoint and coincide with the connected components of the set $\left\{X^{\prime} \in\right.$ $\left.\mathbb{R}^{n-1} ; D\left(X^{\prime}\right) \neq 0\right\}$. For each $j \in \mathbb{N}$ with $1 \leq j \leq N$ we can write

$$
\begin{aligned}
& Q(X)=Q^{0}(0, \cdots, 0,1) \prod_{k=1}^{l}\left(X_{n}-\lambda_{k}\left(X^{\prime}\right)\right), \\
& \lambda_{1}\left(X^{\prime}\right)<\lambda_{2}\left(X^{\prime}\right)<\cdots<\lambda_{r(j)}\left(X^{\prime}\right), \quad \operatorname{Im} \lambda_{k}\left(X^{\prime}\right) \neq 0(r(j)+1 \leq k \leq l)
\end{aligned}
$$

for $X^{\prime} \in A_{j}$, where $l=\operatorname{deg}_{X_{n}} Q(X)$ and $r(j) \in \mathbb{N}$, since the equation $Q\left(X^{\prime}, X_{n}\right)=0$ in X_{n} has only simple roots for $X^{\prime} \in A_{j}$. Put

$$
\begin{aligned}
A_{j, k}:=\{ & X \in A_{j} \times \mathbb{R} ; \text { there are } \lambda_{1}, \cdots, \lambda_{r(j)} \in \mathbb{R} \text { and } \lambda_{r(j)+1}, \cdots \lambda_{l} \in \mathbb{C} \\
& \text { such that } \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r(j)}, \operatorname{Im} \lambda_{\mu} \neq 0(\mu=r(j)+1, \cdots, l), \\
& Q\left(X^{\prime}, t\right)=Q^{0}(0, \cdots, 0,1) \prod_{\mu=1}^{l}\left(t-\lambda_{\mu}\right) \text { as a polynomial of } t \\
& \text { and } \lambda_{k-1}<X_{n}<\lambda_{k} \text { if } 2 \leq k \leq l, X_{n}<\lambda_{1} \text { if } k=1, \\
& \text { and } \left.X_{n}>\lambda_{r(j)} \text { if } k=r(j)+1\right\} \quad(k=1,2, \cdots, r(j)+1) .
\end{aligned}
$$

Then the $A_{j, k}$ are semi-algebraic and

$$
A \cap\left(A_{j} \times \mathbb{R}\right)=\bigcup_{k=1}^{r(j)+1} A_{j, k}
$$

By Lemmas 2 and $4 B_{j, k} \equiv \overline{A_{j, k}} \cap A$ is semi-algebraic. Assume that there are disjoint open subsets C_{1} and C_{2} of $B_{j, k}$ satisfying $B_{j, k}=C_{1} \cup C_{2}$ and $C_{2} \cap A_{j, k} \neq \emptyset$. Since $A_{j, k}$ is connected, $C_{1} \subset \partial A_{j, k} \cap A$, where ∂B denotes the boundary of B in \mathbb{R}^{n} for a subset B of \mathbb{R}^{n}. So we have $C_{1}=\emptyset$. This implies that $B_{j, k}$ are connected. Since $\overline{\left(A_{j} \times \mathbb{R}\right)} \cap A=\bigcup_{k=1}^{r(j)+1} B_{j, k}$, we have

$$
A=\bigcup_{j=1}^{N} \bigcup_{k=1}^{r(j)+1} B_{j, k} .
$$

Put

$$
\Lambda:=\{(j, k) \in \mathbb{N} \times \mathbb{N} ; 1 \leq j \leq N, 1 \leq k \leq r(j)+1\}
$$

For $(j, k),\left(j^{\prime}, k^{\prime}\right) \in \Lambda$ we say that $(j, k) \sim\left(j^{\prime}, k^{\prime}\right)$ if there are $v \in \mathbb{N}$ and $\left(j_{\mu}, k_{\mu}\right) \in \Lambda$ ($1 \leq \mu \leq v$) satisfying $B_{j_{\mu}, k_{\mu}} \cap B_{j_{\mu+1}, k_{\mu+1}} \neq \emptyset(0 \leq \mu \leq v)$, where $\left(j_{0}, k_{0}\right)=(j, k)$ and $\left(j_{v+1}, k_{v+1}\right)=\left(j^{\prime}, k^{\prime}\right)$. For $(j, k) \in \Lambda$ we put

$$
A_{(j, k)}:=\bigcup_{\left(j^{\prime}, k^{\prime}\right) \sim(j, k)} B_{j^{\prime}, k^{\prime}}
$$

Then $A_{(j, k)}$ is a connected component of A and semi-algebraic. Moreover, we have $A=\bigcup_{(j, k) \in \Lambda} A_{(j, k)}$, which proves the theorem.

Definition 6. Let $f(X)$ be a real-valued function defined on \mathbb{R}^{n}. We say that $f(X)$ is semi-algebraic (or a semi-algebraic function) if the graph of f $\left(=\left\{(X, y) \in \mathbb{R}^{n+1} ; y=f(X)\right\}\right)$ is a semi-algebraic set.

Lemma 7. $f(X)$ is semi-algebraic if and only if $A \equiv\left\{(X, y) \in \mathbb{R}^{n+1} ; y \leq\right.$ $f(X)\}$ is a semi-algebraic set.

Proof. Assume that $f(X)$ is semi-algebraic. Then $B \equiv\left\{(X, y, \lambda) \in \mathbb{R}^{n+2}\right.$; $\lambda=f(X)$ and $y \leq \lambda\}$ is a semi-algebraic set. Therefore, Theorem 3 implies that A is semi-algebraic. Next assume that A is semi-algebraic. Then $C \equiv\{(X, y, \lambda) \in$ $\mathbb{R}^{n+1} ; \lambda \leq f(X)$ and $\left.y<\lambda\right\}$ is semi-algebraic. Therefore, Theorem 3 implies that $D \equiv\left\{(X, y) \in \mathbb{R}^{n+1} ; y<f(X)\right\}$ is semi-algebraic. Thus $A \backslash D=\left\{(X, y) \in \mathbb{R}^{n+1} ;\right.$ $y=f(X)\}$ is semi-algebraic.

Definition 8. (i) Let $f(X)$ be a complex-valued function defined on \mathbb{R}^{n}. We say that $f(X)$ is semi-algebraic (or a semi-algebraic function) if $\operatorname{Re} f(X)$ and $\operatorname{Im} f(X)$ are semi-algebraic.
(ii) Let $X^{0} \in \mathbb{R}^{n}$, and let $f(X)$ be a complex-valued function defined in a neighborhood of X^{0}. We say that $f(X)$ is semi-algebraic at X^{0} if there is $r>0$ such that the sets $\left\{(X, y) \in \mathbb{R}^{n+1} ;\left|X-X^{0}\right|<r\right.$ and $\left.y=\operatorname{Re} f(X)\right\}$ and $\left\{(X, y) \in \mathbb{R}^{n+1}\right.$; $\left|X-X^{0}\right|<r$ and $\left.y=\operatorname{Im} f(X)\right\}$ are semi-algebraic.
(iii) Let U be an open subset of \mathbb{R}^{n}, and let $f(X)$ be a complex-valued function defined in U. We say that $f(X)$ is semi-algebraic in U if $f(X)$ is semi-algebraic at every $X^{0} \in U$.

Lemma 9. Let $X^{0} \in \mathbb{R}^{n}$, and let $f(X)$ and $g(X)$ be semi-algebraic (resp. semi-algebraic at X^{0}).
(i) $\alpha f(X)+\beta g(X)$ and $f(X) g(X)$ are semi-algebraic (resp. semi-algebraic at X^{0}), where $\alpha, \beta \in \mathbb{C}$.
(ii) If $g(X) \neq 0$ for $X \in \mathbb{R}^{n}$ (resp. $g(X) \neq 0$ in a neighborhood of X^{0}), then $f(X) / g(X)$ is semi-algebraic (resp. semi-algebraic at X^{0}).
(iii) If $g(X) \geq 0$ for $X \in \mathbb{R}^{n}$ (resp. $g(X) \geq 0$ in a neighborhood of X^{0}), then $g(X)^{1 / l}(\geq 0)$ is semi-algebraic (resp. semi-algebraic at $\left.X^{0}\right)$, where $l \in \mathbb{N}$.

Proof. Let us prove the first part of the assertion (i) in the case where $f(X)$ and $g(X)$ are semi-algebraic at X^{0}. The other assertions can be proved by the same argument. We may assume that $f(X)$ and $g(X)$ are real-valued. By assumption there is $r>0$ such that $A \equiv\left\{(X, \lambda) \in \mathbb{R}^{n+1} ;\left|X-X^{0}\right|<r\right.$ and $\left.\lambda=f(X)\right\}$ and $B \equiv\left\{(X, \mu) \in \mathbb{R}^{n+1} ;\left|X-X^{0}\right|<r\right.$ and $\left.\mu=g(X)\right\}$ are semi-algebraic sets. Since

$$
\begin{gathered}
C:=\left\{(X, \lambda, \mu, y) \in \mathbb{R}^{n+3} ;\left|X-X^{0}\right|<r, \lambda=f(X), \mu=g(X)\right. \\
\text { and } y=\alpha \lambda+\beta \mu\}
\end{gathered}
$$

is semi-algebraic, Theorem 3 implies that $\alpha f(X)+\beta g(X)$ is semi-algebraic at X^{0}.

Theorem 10. Let $X^{0} \in \mathbb{R}^{n}$, and assume that $f(X)$ is in C^{∞} and semi-algebraic (resp. semi-algebraic at X^{0}). Then there is a irreducible polynomial $P(z, X)(\not \equiv 0)$ of $(z, X)=\left(z, X_{1}, \cdots, X_{n}\right)$ satisfying $P(f(X), X) \equiv 0($ resp. $P(f(X), X)=0$ in a neighborhood of X^{0}).

Proof. Let us prove the theorem in the case where $f(X)$ is semi-algebraic at X^{0}. We may assume that $f(X)$ is real-valued. By assumption there is $r>0$ such that $f(X) \in C^{\infty}\left(B_{r}\left(X^{0}\right)\right)$ and the set $S \equiv\left\{(X, y) \in B_{r}\left(X^{0}\right) \times \mathbb{R} ; y=f(X)\right\}$ is semialgebraic, where $B_{r}\left(X^{0}\right)=\left\{X \in \mathbb{R}^{n} ;\left|X-X^{0}\right|<r\right\}$. First consider the case where $n=1$. Let $F(z, X)$ be the product of all polynomials $F_{j, k}(z, X)$, except polynomials depending only on X, that appear in the definition of the semi-algebraic set S in Definition 1 as $A_{j, k}=\left\{(z, X) \in \mathbb{R}^{n+1} ; F_{j, k}(z, X)=0\right.$ (resp. $\left.\left.>0\right)\right\}$. Then we have $F(f(X), X)=0$ in $B_{r}\left(X^{0}\right)$ since S is a graph of $f(X)$. Write

$$
F(z, X)=F_{1}(z, X)^{m_{1}} \cdots F_{s}(z, X)^{m_{s}},
$$

where the $F_{j}(z, X)$ are irreducible polynomials and mutually prime. We put

$$
G(z, X)=F_{1}(z, X) \cdots F_{s}(z, X)
$$

and denote by $D(X)$ the discriminant of the equation $G(z, X)=0$ in z. Then $D(X) \not \equiv 0$. Let $X^{1} \in B_{r}\left(X^{0}\right)$, and assume that $D\left(X^{1}\right) \neq 0$. Since the roots of $G\left(z, X^{1}\right)=0$ in z are all simple, $f(X)$ is analytic at X^{1}, and there is $j\left(X^{1}\right) \in \mathbb{N}$ with $1 \leq j\left(X^{1}\right) \leq s$ such that $F_{j\left(X^{1}\right)}(f(X), X)=0$ in a neighborhood of X^{1}. Next assume that $D\left(X^{1}\right)=0$. Then there is $\delta>0$ such that $D(X) \neq 0$ if $0<\left|X-X^{1}\right|<$ δ. Moreover, $f(X)$ is equal to a convergent Puiseux series if $0< \pm\left(X-X^{1}\right)<\delta$, respectively, modifying δ if necessary. Since $f(X)$ is in C^{∞}, the Puiseux series are Taylor series and, therefore, $f(X)$ is analytic at X^{1}. So $f(X)$ is analytic in $B_{r}\left(X^{0}\right)$ and there is $j \in \mathbb{N}$ with $1 \leq j \leq s$ such that $F_{j}(f(X), X)=0$ in $B_{r}\left(X^{0}\right)$. Next let us consider the case where $n \geq 2$. Similarly, there is a polynomial $F(z, X)(\not \equiv 0)$ such that $F(f(X), X)=0$ in $B_{r}\left(X^{0}\right)$. Write

$$
F(z, X)=F_{1}(z, X)^{m_{1}} \cdots F_{s}(z, X)^{m_{s}},
$$

where the $F_{j}(z, X)$ are irreducible polynomials and mutually prime. We put

$$
G(z, X)=F_{1}(z, X) \cdots F_{s}(z, X)
$$

and denote by $D(X)$ the discriminant of the equation $G(z, X)=0$ in z. We have $D(X) \not \equiv 0$. We may assume that $D^{0}(0, \cdots, 0,1) \neq 0$, where $D^{0}(X)$ denotes the principal part of $D(X)$, using linear transformation if necessary. If $D\left(X^{0}\right) \neq$ 0 , then $f(X)$ is analytic at X^{0} and we can choose $j \in \mathbb{N}$ with $1 \leq j \leq s$ so that $F_{j}(f(X), X)=0$ in a neighborhood of X^{0}. Now assume that $D\left(X^{0}\right)=0$. Choose $X^{1 \prime} \in \mathbb{R}^{n-1}$ so that $\left|X^{1 \prime}-X^{0 \prime}\right|<r$, where $X^{0}=\left(X_{1}^{0}, \cdots, X_{n}^{0}\right)$ and $X^{0 \prime}=$ $\left(X_{1}^{0}, \cdots, X_{n-1}^{0}\right)$. Since $D\left(X^{1 \prime}, X_{n}\right) \not \equiv 0$ in X_{n}, applying the same argument for the case $n=1$, we can see that $f\left(X^{1^{\prime}}, X_{n}\right)$ is analytic in X_{n} if $\left(X^{1^{\prime}}, X_{n}\right) \in B_{r}\left(X^{0}\right)$ and that there is $j \in \mathbb{N}$ with $1 \leq j \leq s$ satisfying $F_{j}\left(f\left(X^{1 \prime}, X_{n}\right), X^{1 \prime}, X_{n}\right)=0$ if $\left(X^{1 \prime}, X_{n}\right) \in B_{r}\left(X^{0}\right)$. On the other hand, for each connected component A_{k} of the set $\left\{X \in \mathbb{R}^{n} ; D(X) \neq 0\right\}$ there is $j \equiv j\left(A_{k}\right) \in \mathbb{N}$ with $1 \leq j \leq s$ satisfying $F_{j}(f(X), X)=0$ in $A_{k} \cap B_{r}\left(X^{0}\right)$. Therefore, there are $\delta>0$ and $j \in \mathbb{N}$ such that $1 \leq j \leq s$ and $F_{j}(f(X), X)=0$ if $X \in B_{r}\left(X^{0}\right)$ and $\left|X^{\prime}-X^{0 \prime}\right|<\delta$.

Theorem 11. Let $X^{0} \in \mathbb{R}^{n}$, and assume that $f(X)$ is a continuous function defined on \mathbb{R}^{n} (resp. near X^{0}). Moreover, we assume that there is a polynomial $P(z, X)(\not \equiv 0)$ satisfying $P(f(X), X) \equiv 0($ resp. $P(f(X), X)=0$ in a neighborhood of X^{0}). Then $f(X)$ is semi-algebraic (resp. semi-algebraic at X^{0}).

Proof. Let us prove the theorem in the case where $f(X)$ is defined in $B_{r}\left(X^{0}\right)$. We may assume that $f(X)$ is real-valued and that $P(z, \lambda)$ is a real polynomial. Write

$$
P(z, X)=P_{1}(z, X)^{m_{1}} \cdots P_{s}(z, X)^{m_{s}}
$$

where the $P_{j}(z, X)$ are irreducible and mutually prime. We put

$$
Q(z, X)=P_{1}(z, X) \cdots P_{s}(z, X)
$$

and denote by $D(X)$ the discriminant of the equation $Q(z, X)=0$ in z. Then we have $D(X) \not \equiv 0$. Put $A:=\left\{X \in \mathbb{R}^{n} ; D(X) \neq 0\right\}$. It follows from Theorem 5 that there are a finite number of semi-algebraic sets A_{1}, \cdots, A_{N} in \mathbb{R}^{n} such that the A_{j} are the disjoint connected components of A and $A=\bigcup_{j=1}^{N} A_{j}$. For each $j \in \mathbb{N}$ with $1 \leq j \leq N$ there are $r(j) \in \mathbb{N}$ with $1 \leq r(j) \leq m$, a polynomial $c(X)$ and $\lambda_{k}(X)$ defined in $A_{j}(1 \leq k \leq m)$ such that $c(X) \neq 0$ and

$$
\begin{aligned}
& Q(z, X)=c(X) \prod_{k=1}^{m}\left(z-\lambda_{k}(X)\right) \\
& \lambda_{1}(X)<\lambda_{2}(X)<\cdots<\lambda_{r(j)}(X), \quad \operatorname{Im} \lambda_{k}(X) \neq 0(r(j)+1 \leq k \leq m)
\end{aligned}
$$

for $X \in A_{j}$, where $m=\operatorname{deg}_{z} Q(z, X)$. Let $j \in \mathbb{N}$ satisfy $1 \leq j \leq N$ and $A_{j} \cap B_{r}\left(X^{0}\right) \neq$ \emptyset. Then there exists uniquely $k(j) \in \mathbb{N}$ satisfying $1 \leq k(j) \leq r(j)$ and $\lambda_{k(j)}(X)=$ $f(X)$ in $A_{j} \cap B_{r}\left(X^{0}\right)$. Put

$$
\begin{aligned}
E_{j}:=\{ & (X, y) \in A_{j} \times \mathbb{R} ; X \in B_{r}\left(X^{0}\right) \text { and there are } a \in \mathbb{R} \text { and } \lambda_{1}, \cdots, \lambda_{m} \in \mathbb{C} \\
& \text { such that } Q(z, X)=a \prod_{k=1}^{m}\left(z-\lambda_{k}\right), \lambda_{1}<\cdots<\lambda_{r(j)}, \\
& \left.\operatorname{Im} \lambda_{k} \neq 0(r(j)+1 \leq k \leq m) \text { and } y=\lambda_{k(j)}\right\} .
\end{aligned}
$$

Then E_{j} is semi-algebraic and

$$
E_{j}=\left\{(X, y) \in A_{j} \times \mathbb{R} ; X \in B_{r}\left(X^{0}\right) \text { and } y=f(X)\right\} .
$$

Put

$$
\widetilde{E}_{j}:=\left\{(X, y) \in \overline{A_{j}} \times \mathbb{R} ; X \in B_{r}\left(X^{0}\right) \text { and } y=f(X)\right\} .
$$

Since $\widetilde{E}_{j}=\overline{E_{j}} \cap B_{r}\left(X^{0}\right) \times \mathbb{R}, \widetilde{E}_{j}$ is semi-algebraic. So $E \equiv \bigcup_{j: A_{j} \cap B_{r}\left(X^{0}\right) \neq \emptyset} \widetilde{E}_{j}$ is semi-algebraic. Note that $\bigcup_{j=1}^{N} \overline{A_{j}}=\mathbb{R}^{n}$ and that $\overline{A_{j}} \cap B_{r}\left(X^{0}\right)=\emptyset$ if $A_{j} \cap B_{r}\left(X^{0}\right)=$ \emptyset. Then we have

$$
E=\left\{(X, y) \in B_{r}\left(X^{0}\right) \times \mathbb{R} ; y=f(X)\right\} .
$$

References

[H] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

