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Let K =R or C, and letH be a pre-Hilbert space ové&t with inner product
(-,)n, and letf : H x --- x H — C be a symmetric n-linear form dr. Define
[fll2=sup{|f(x,---,x)|; x€ H and||x]| = 1},
[f]l2 = sup{|f(xs, -~ ,X)[; Xj € H and|[xj|| = 1 (1< j <n)},

where||x|| = v/ (X, X)n. By definition it is obvious thaf f |3 < || f||2.
Theorem. The two normg f||1 and || f ||2 coincide, i.e.||f||1 = || f||2.

Remark. We thought the theorem must be well-known. However, we could not
find any literature, and we gave a proof of the theorem (in 1992). Now we guess
this theorem is not necessarily familiar among mathematicians. So we give its
proof here.

To prove the theorem we need the following

Lemma. Let ke N, and let g be a symmetrigk-linear form on H. Then we
have
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(1) %(—1)"J (j>92j (x+y,x—y) = 2%ge(x,y) forx,yecH,
j:

where for0 <i < 2k

9i(X,Y) = 9(X1, X2k [x;=x (1<<i), xn=y (i-+1<h<2k)-

*In simplifying our original proof and writing the first version | made mistakes. As Prof.
Lerner told me that it is not understandable, | noticed that its proof is incomplete, and correct the
first version.



Proof. Itis obvious that (1) is valid ik = 1. Let/ € N, and suppose that (1)
is valid fork < ¢. Then, fork = ¢+ 1 we have
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since(*) = (7% + ({71) (1< j <k—1). By assumption we have
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— 226 Vg 1 (x yix—y,x—y) + 225 Vg1 (X y x+y,x+y)
= 22"gk(x, y),
where
Gi 06 YU, V) = 9(Xa, - Xak) [ =x (1< <i). xo=y (i+1<h<2k-2). xp1=u, xr=v:
sincegyj (X+Y,X—Y) = Goj (X+ Y, X— V; X— Y, X—Y), G2j+2(X+ Y, X —y) = Gpj (X+

Y, X—Y; X+ VY, X+Y), g(X1,- -, X, U,U) iS a symmetric 2-linear form for a fixed
u € H anddi(x,y; u,v) is a symmetric bilinear form for fixegy € H. O

We shall prove the theorem by induction anit is obvious that| f||1 = || f||2
if n=1. Let/ € N, and suppose that the theorem is validriot /. Letn=/+1
ande > 0. Then there argj € H (1 < j < n) satisfying||uj|| = 1 and

[ f(ug, Uz, un)| > || fl[2—e&.
LetX = {3"_;ajuj; aj € K (1< j <n)}. We may assume that
sup{|f (xz, -+, Xn)|; Xj € X and|xj[| =1 (1< j<n)}=1.
Let us show that

(2) sup{|f(x,---,X)|; xe X and||x|| = 1}
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> sup{[f(x1, - %) [; j € X and]lx|| =1 (1< j<n)}=1
(= [fl2—e).

which proves the theorem. Letd k < n. By the induction assumption we have

sup{| f(Xe, - , X, X1, > %n)|; Xj € X and|[xj|| =1 (1< j <k)}
= sup{| f(X,--- ;X Xcr1,- -, %) |5 X € X and|[x|| = 1}

for anyxg.1,--- ,Xn € X. Moreover, we have

1=sup{|f(X -, XXr1, sXn)|; X, X1, s Xn € X
and||x|| = [[Xet1/l = - = [xn]| = 1}
= sup{| fik(x,y)|; x,y € X and||x|| = ly|| = 1},

where
fi(X,y) = F (X1, Xn) [x;=x (1<j<i), xn=y (i+1<h<n)-
Put

V={xy) eXxX; X[ =yl =1
and|fk(x,y)| = 1 for somek with 1 <k < n—1}.

SinceX is a finite dimensional subspace, we h&vg 0. Define

y=max{|(xy)ul; (xy) €V},

and chooséx,y) €V andk € Nso that I< k<n—1, (x,y)n = yand| fx(x,y)| = 1.
Since(v,u) € V if (u,v) € V, we may assume th&t< n/2. Applying (1) to a
symmetric X-linear form f (xg,--- , %ok, Y, - ,¥), we have
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J
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< [ fx(X+y,y)| + () X+ V12 1% — yI[2K=D) — |1x 4y
[ Facx+ YY) (;) i) ety -y Ix+y|*)
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= ltadcryy) ey 5 () @ 2niz—29)
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= [fa(X+Y,Y)| — [[x+y[| 2+ 2%



where

fi k(U VW) = F (X, Xai, We -, W) |y —u (1< <i), xy=v (i+1<h<2K)-

This gives| fa(x+Y,y)| > [|x+y||%, which implies that fa (x4, y)| = [|x+y]|?.
Puttingw = (x+Y)/||[X+Y||, we have fa(w,y)| = 1 and||w|| = 1. If 2k = n, then
| fac(w,y)| = |f(w,---,w)| = 1. In this case (2) holds. Now assume thkt2n.
Then we havéw,y) € V and

(3) Wy =+(y+1)/2<y.

(3) and the definition of/ yield y = 1 and, thereforex =y, which implies that
|f(x,---X)| =1 and (2) holds.



