Is there $g(t) \in C^{\infty}(\mathbb{R})$ satisfying $f(t)=g(t)^{2}$
 when $f(t) \in C^{\infty}(\mathbb{R})$ and $f(t) \geq 0$?

Seiichiro Wakabayashi

May 19, 2006

We shall prove the following
Theorem 1. Let $f(t) \in C^{\infty}(\mathbb{R})$ satisfy $f(t) \geq 0(t \in \mathbb{R})$, and assume that $Z \equiv\{t \in \mathbb{R} ; f(t)=0\}$ has no accumulating point. Moreover, we assume the following condition:
(A) If $t_{0} \in Z$ is a zero of f of infinite order, then there are $N \in \mathbb{N}$ and $\eta>0$ such that for any $\varepsilon>0$ there is $C_{\varepsilon}>0$ satisfying

$$
\int_{0}^{1}(1-\theta)^{N-1} f\left(t_{0}+\theta t\right) d \theta \leq C_{\varepsilon} f\left(t_{0}+t\right)^{1-\varepsilon}
$$

for $t \in\left[t_{0}-\eta, t_{0}+\eta\right]$.
Then there is $g(t) \in C^{\infty}(\mathbb{R})$ satisfying $f(t)=g(t)^{2}(t \in \mathbb{R})$.
Remark. If for every $t_{0} \in Z$ there is $\eta>0$ such that $f(t) \searrow$ on $\left[t_{0}-\eta, t_{0}\right]$ and $f(t) \nearrow$ on $\left[t_{0}, t_{0}+\eta\right]$, then the condition (A) is satisfied. In particular, if the set $\left\{t \in \mathbb{R} ; f^{\prime}(t)=0\right\}$ has no accumulating point, then the condition (A) is satisfied.

To prove the theorem we need the following two lemmas.
Lemma 2. Assume that $f(t) \in \mathscr{B}(\mathbb{R})$, i.e., $f(t)$ and its derivatives are all bounded, and that for any $\varepsilon>0$ there is $C_{\varepsilon}>0$ satisfying

$$
\begin{equation*}
|f(s)| \leq C_{\varepsilon}|f(t)|^{1-\varepsilon} \quad \text { if }-\infty<s<t<\infty . \tag{1}
\end{equation*}
$$

Then, for any $k \in \mathbb{Z}_{+}(:=\mathbb{N} \cup\{0\})$ and $\varepsilon>0$ there is $C_{k, \varepsilon}>0$ such that

$$
\left|f^{(k)}(t)\right| \leq C_{k, \varepsilon}|f(t)|^{1-\varepsilon} \quad(t \in \mathbb{R})
$$

Proof. For fixed $N \in \mathbb{N}$ and $t \in \mathbb{R}$ we have

$$
f(t+s)=f(t)+s f^{\prime}(t)+\cdots+\frac{s^{N-1}}{(N-1)!} f^{(N-1)}(t)+\frac{s^{N}}{N!} f^{(N)}(t+\theta s)
$$

where $0<\theta \equiv \theta_{N}(t, s)<1$. Now assume that $f(t) \neq 0$. We have

$$
\begin{aligned}
& h_{j}(t):=f(t)-f\left(t-j|f(t)|^{1 / N}\right)+\frac{(-1)^{N} j^{N}}{N!}|f(t)| f^{(N)}\left(t-j \theta_{j}|f(t)|^{1 / N}\right) \\
& =j|f(t)|^{1 / N} f^{\prime}(t)-\frac{j^{2}}{2}|f(t)|^{2 / N} f^{\prime \prime}(t)+ \\
& \quad \cdots+(-1)^{N} \frac{j^{N-1}}{(N-1)!}|f(t)|^{(N-1) / N} f^{(N-1)}(t) \quad(j=1,2, \cdots, N-1)
\end{aligned}
$$

where $(0<) \theta_{j}=\theta_{N}\left(t,-j|f(t)|^{1 / N}\right)(<1)$. Note that

$$
\left|h_{j}(t)\right| \leq|f(t)|\left(1+j^{N} C_{N}(f) / N!\right)+C_{\delta}|f(t)|^{1-\delta} \leq C_{N, \delta}|f(t)|^{1-\delta} \quad \text { for } \delta>0,
$$

where $C_{N}(f)=\sup _{s \in \mathbb{R}}\left|f^{(N)}(s)\right|, C_{\delta}$ is the constant in (1) and the $C_{N, \delta}$ are positive constants. Put

$$
A=\left((-1)^{k+1} j^{k}\right)_{\substack{j \downarrow 1,2, \cdots, N-1 \\ k \rightarrow}} .
$$

Since $\operatorname{det} A \neq 0$, there is the inverse $A^{-1}=\left(B_{N, j, k}\right)_{\substack { j \downarrow 1,2, \cdots, N-1 \\ k \rightarrow \begin{subarray}{c}{ j \downarrow 1 , 2 , \cdots , N - 1 \\ k \rightarrow \begin{subarray} { c } { } }\end{subarray}}$. Therefore, we have, with some positive constants $C_{N, j, \delta}$,

$$
\begin{aligned}
& |f(t)|^{j / N} f^{(j)}(t) / j!=\sum_{k=1}^{N-1} B_{N, j, k} h_{k}(t) \\
& \left|f^{(j)}(t)\right| \leq C_{N, j, \delta}|f(t)|^{1-\delta-j / N} \quad \text { for } \delta>0
\end{aligned}
$$

($j \leq j \leq N-1$).
Lemma 3. Assume that $f(t) \in \mathscr{B}(\mathbb{R}), f(t)=0(t<0)$ and $f(t)>0(t>0)$. Moreover, we assume that there is $N \in \mathbb{N}$ such that for any $\varepsilon>0$ there is $C_{\varepsilon}>0$ satisfying

$$
\begin{equation*}
\int_{0}^{1}(1-\theta)^{N-1} f(\theta t) d \theta \leq C_{\varepsilon} f(t)^{1-\varepsilon} \quad(0<t \leq 1) \tag{2}
\end{equation*}
$$

Then, for any $k \in \mathbb{Z}_{+}$and $\varepsilon>0$ there is $C_{k, \varepsilon}>0$ such that

$$
\begin{equation*}
\left|f^{(k)}(t)\right| \leq C_{k, \varepsilon} f(t)^{1-\varepsilon} \quad(t \leq 1) . \tag{3}
\end{equation*}
$$

Moreover, for $n \in \mathbb{N} f(t)^{1 / n}$ belongs to $C^{\infty}(\mathbb{R})$.

REMARK. If for any $\varepsilon>0$ there is $C_{\varepsilon}>0$ such that $f(s) \leq C_{\varepsilon} f(t)^{1-\varepsilon}(0<s<$ $t \leq 1$), then for any $N \in \mathbb{N}(2)$ is valid.

Proof. Put

$$
F(t)=\int_{0}^{1}(1-\theta)^{N-1} f(\theta t) d \theta \cdot t^{N} /(N-1)!.
$$

Then we have $F^{(N)}(t)=f(t)$. Indeed, we have

$$
\left.\begin{array}{rl}
F^{\prime}(t)= & \int_{0}^{1} \theta(1-\theta)^{N-1} f^{\prime}(\theta t) d \theta \cdot t^{N} /(N-1)! \\
& \quad+\int_{0}^{1}(1-\theta)^{N-1} f(\theta t) d \theta \cdot N t^{N-1} /(N-1)! \\
=\left\{\left[\theta(1-\theta)^{N-1} f(\theta t)\right]_{\theta=0}^{\theta=1}-\int_{0}^{1}\left((1-\theta)^{N-1}-(N-1) \theta(1-\theta)^{N-2}\right)\right.
\end{array}\right\} \begin{aligned}
=\left\{\begin{array}{l}
\int_{0}^{1}(1-\theta)^{N-2} f(\theta t) d \theta \cdot t^{N-1} /(N-2)!\quad(N \geq 2), \\
f(t) \quad(N=1),
\end{array}\right.
\end{aligned}
$$

which proves the assertion. Modifying $F(t)$ for $t \geq 1$, we may assume that $F(t) \in$ $\mathscr{B}(\mathbb{R})$ and $F(t) /$. Since $0 \leq F(s) \leq F(t)(s<t)$, it follows from Lemma 2 and (2) that for any $k \in \mathbb{Z}_{+}$and $\varepsilon>0$ there are positive constants $C_{k, \varepsilon}$ and $C_{k, \varepsilon}^{\prime}$ such that

$$
\left|f^{(k)}(t)\right| \leq C_{k, \varepsilon}^{\prime} F(t)^{1-\varepsilon / 2} \leq C_{k, \varepsilon} f(t)^{1-\varepsilon} \quad(t \leq 1)
$$

which proves the first part of the lemma. Put $g_{n}(t)=f(t)^{1 / n}$ for $n \in \mathbb{N}$. Let $\delta>0$. Then we can show by induction that there are $C_{k}>0\left(k \in \mathbb{Z}_{+}\right)$satisfying

$$
\begin{equation*}
\left|g_{n}^{(k)}(t)\right| \leq C_{k} f(t)^{1 / n-k \delta} \quad\left(k \in \mathbb{Z}_{+}, 0<t \leq 1\right) \tag{4}
\end{equation*}
$$

Indeed, (4) with $k=0$ is valid. Suppose that (4) holds for $k \leq \ell$. From the identity $n g_{n}^{\prime}(t) g_{n}(t)^{n-1}=f^{\prime}(t)$, we have

$$
n g_{n}^{(\ell+1)}(t) g_{n}(t)^{n-1}=f^{(\ell+1)}(t)-n \sum_{|\alpha|=\ell, \alpha_{1}<\ell} \frac{\ell!}{\alpha!} g_{n}^{\left(\alpha_{1}+1\right)}(t) g_{n}^{\left(\alpha_{2}\right)}(t) \cdots g_{n}^{\left(\alpha_{n}\right)}(t)
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in\left(\mathbb{Z}_{+}\right)^{n}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. This, together with (3) and (4) for $k \leq \ell$, gives

$$
\left|g_{n}^{(\ell+1)}(t)\right| \leq n^{-1} f(t)^{-1+1 / n}\left\{C_{\ell+1, \delta(\ell+1)} f(t)^{1-(\ell+1) \delta}\right.
$$

$$
\begin{aligned}
& \left.\quad+n \sum_{|\alpha|=\ell, \alpha_{1}<\ell} \frac{\ell!}{\alpha!} C_{\alpha_{1}+1} C_{\alpha_{2}} \cdots C_{\alpha_{n}} f(t)^{1-(\ell+1) \delta}\right\} \\
& \leq C_{\ell+1} f(t)^{1 / n-(\ell+1) \delta} \quad(0<t \leq 1)
\end{aligned}
$$

which proves (4). Note that $\lim _{t \rightarrow+0} g_{n}^{(k)}(t)=0\left(k \in \mathbb{Z}_{+}\right)$. Applying the mean value theorem, we can prove inductively $g_{n}(t) \in C^{\infty}(\mathbb{R})$.

Now we can prove Theorem 1. We can assume without loss of generality that

$$
Z=\left\{t_{0}, t_{ \pm 1}, t_{ \pm 2}, \cdots\right\} \quad \text { and } \quad \cdots<t_{-2}<t_{-1}<0 \leq t_{0}<t_{1}<t_{2}<\cdots
$$

If t_{0} is a zero of f of infinite order, then by Lemma 3 we can choose $g(t) \geq 0$ near t_{0} so that $g(t)$ is in C^{∞} and $g(t)^{2}=f(t)$. In the case t_{0} is a zero of order $4 m$ ($m=1,2, \cdots$), we can also construct $g(t) \geq 0$ near t_{0}. If t_{0} is a zero of order $4 m-2$ ($m=1,2, \cdots$), then we can construct $g(t)$ near t_{0} so that $g(t)<0$ for $t \in\left(t_{-1}, t_{0}\right)$ and $g(t)>0$ for $t \in\left(t_{0}, t_{1}\right)$. Next we extend $g(t)$ in a neighborhood of $t=t_{1}$, choosing its signature appropriately. And then we extend $g(t)$ in a neighborhoods of $t=t_{-1}, t=t_{2}, t=t_{-2}, \cdots$ in turn. Finally we obtain $g(t) \in C^{\infty}(\mathbb{R})$ satisfying $g(t)^{2}=f(t)$.

Example 1. Let $a \geq 2$, and put

$$
f(t)= \begin{cases}e^{-1 / t}(1-\sin (1 / t))+e^{-a / t} & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

Then $f(t)>0(t>0)$ and $\sqrt{f(t)} \notin C^{2}(\mathbb{R})$. Indeed, putting $t_{n}=(2 n \pi+\pi / 2)^{-1}$ ($n \in \mathbb{N}$), we have

$$
\begin{aligned}
& f\left(t_{n}\right)=e^{-a / t_{n}}, \quad f^{\prime}\left(t_{n}\right)=a t_{n}^{-2} e^{-a / t_{n}} \\
& f^{\prime \prime}\left(t_{n}\right)=t_{n}^{-4} e^{-1 / t_{n}}+a^{2} t_{n}^{-4} e^{-a / t_{n}}-2 a t_{n}^{-3} e^{-a / t_{n}}
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \left.\frac{d^{2}}{d t^{2}} \sqrt{f(t)}\right|_{t=t_{n}}=f^{\prime \prime}\left(t_{n}\right) f\left(t_{n}\right)^{-1 / 2} / 2-f^{\prime}\left(t_{n}\right)^{2} f\left(t_{n}\right)^{-3 / 2} / 4 \\
& =t_{n}^{-4} e^{(a / 2-1) / t_{n}}+o(1) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

This gives $\left.\lim _{n \rightarrow \infty}\left(d^{2} / d t^{2}\right) \sqrt{f(t)}\right|_{t=t_{n}}=\infty$. One can also find a similar example in the following paper:
G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier,

Grenoble 13 (1963), 203-210.

