Singularities of solutions to the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable

S. Wakabayashi (Univ. of Tsukuba)

1. Introduction

Let $x = (x_0, x'') = (x_0, x_1, \dots, x_n) \in \mathbf{R}^{n+1}$, and denote by $\xi = (\xi_0, \xi'') = (\xi_0, \xi_1, \dots, \xi_n) \in \mathbf{R}^{n+1}$ their dual variables. The x_0 variable plays the role of the time variable. We consider second-order hyperbolic operators with symbols

$$P(x,\xi) = p(x_0,\xi) + \sum_{j=0}^{n} b_j(x)\xi_j + c(x),$$

where

$$p(x_0,\xi) = \xi_0^2 + \sum_{|\alpha|=2,\alpha_0 \le 1} a_\alpha(x_0)\xi^\alpha.$$

We assume that

(A) the $a_{\alpha}(x_0)$ are real analytic on $[0, \infty)$ and $b_j(x), c(x) \in C^{\infty}(\overline{\mathbf{R}^{n+1}_+})$ $(0 \le j \le n)$.

Here $\mathbf{R}^{n+1}_{+} = \{x \in \mathbf{R}^{n+1}; x_0 > 0\}$. We consider the following Cauchy problem:

(CP)
$$\begin{cases} P(x, D)u(x) = f(x) & \text{in } (0, \infty) \times \mathbf{R}^n, \\ D_0^j u(x)|_{x_0=0} = u_j & \text{in } \mathbf{R}^n \quad (j = 0, 1), \end{cases}$$

where $f \in C([0,\infty); \mathcal{D}'(\mathbf{R}^n))$ and $u_j \in \mathcal{D}'(\mathbf{R}^n)$ (j = 0, 1). We may assume by coordinate transformation

$$a_{\alpha}(x_0) \equiv 0$$
 if $|\alpha| = 2$ and $\alpha_0 = 1$.

So $P(x,\xi)$ can be written as follows:

$$P(x,\xi) = \xi_0^2 - a(x_0,\xi'') + b_0(x)\xi_0 + b(x,\xi'') + c(x),$$

$$a(x_0,\xi'') = \sum_{j,k=1}^n a_{j,k}(x_0)\xi_j\xi_k, \quad b(x,\xi'') = \sum_{j=1}^n b_j(x)\xi_j, \quad a_{j,k}(x_0) = a_{k,j}(x_0).$$

We assume the following conditions:

(H) $a(x_0,\xi'') \ge 0$ for $(x_0,\xi'') \in [0,\infty) \times \mathbf{R}^n$.

(F)
$$b(x,\xi'') \equiv 0$$
 in x for any $\xi'' \in V$, where $V = \{\xi'' \in \mathbf{R}^n; a(x_0,\xi'') \equiv 0$ in $x_0\}$.

If (CP) is C^{∞} well-posed, then it follows from the Lax-Mizohata theorem and results in [IP] that (H) and (F) must be satisfied. By (H) V is a vector subspace of \mathbf{R}^n . So we may assume, with $1 \le n' \le n$, that $V = \{\xi'' \in \mathbf{R}^n; \xi_1 = \cdots = \xi_{n'} = 0\}$, since the case $V = \mathbf{R}^n$ is trivial. Then by (F) we have

$$a(x_0,\xi'') \equiv a(x_0,\xi') \neq 0 \quad \text{in } x_0 \text{ for } \xi' \neq 0, \quad b(x,\xi'') \equiv b(x,\xi'),$$

where $\xi' = (\xi_1, \dots, \xi_{n'})$. From (A) we have the following:

- (i) For T > 0 there is $k_T \in \mathbf{N}$ such that $\sum_{j=0}^{k_T} |\partial_{x_0}^j a(x_0, \xi')| \neq 0$ for $(x_0, \xi') \in [0, T] \times S^{n'-1}$, where $S^{n'-1}$ denotes the (n'-1) dimensional unit sphere.
- (ii) There are $r \in \mathbf{N}$, real analytic functions $\lambda_j(x_0)$ and $v_{j,k}(x_0)$ ($1 \le j \le r, 1 \le k \le n'$) defined on $[0, \infty)$ such that $\lambda_j(x_0) \not\equiv 0$, $a(x_0, \xi') = \sum_{j=1}^r \lambda_j(x_0)\zeta_j(x_0, \xi')^2$, where $\zeta_j(x_0, \xi') = \sum_{k=1}^{n'} v_{j,k}(x_0)\xi_k$.

Let Ω be a neighborhood of $[0, \infty)$ in **C** such that the $a_{j,k}(x_0)$ can be extended analytically to Ω , and define $\mathcal{R}(\xi') = \{(\operatorname{Re} \lambda)_+; \lambda \in \Omega \text{ and } a(\lambda, \xi') = 0\}$ for $\xi' \in \mathbf{R}^{n'} \setminus \{0\}$, where $a_+ = \max\{a, 0\}$. We assume

(L) For any T > 0 and $x'' \in \mathbf{R}^n$, there is C > 0 such that

$$\min_{t \in \mathcal{R}(\xi')} |x_0 - t| |b(x, \xi')| \le C\sqrt{a(x_0, \xi')} \quad \text{for } (x_0, \xi') \in [0, T] \times (\mathbb{R}^{n'} \setminus \{0\}),$$

where $\min_{t \in \mathcal{R}(\xi')} |x_0 - t| = 1$ if $\mathcal{R}(\xi') = \emptyset$.

(L) is a so-called Levi condition. Put

$$\Gamma(p(x_0, \cdot), \vartheta) = \{\xi \in \mathbf{R}^{n+1}; \ \xi_0 > \sqrt{a(x_0, \xi')}\},\$$

$$\Gamma^* = \{y \in \mathbf{R}^{n+1}; \ y \cdot \xi \ge 0 \text{ for any } \xi \in \Gamma\},\$$

where $\vartheta = (1, 0, \cdots, 0) \in \mathbf{R}^{n+1}$. We define for $x^0 \in \overline{\mathbf{R}^{n+1}_+}$

$$K_{x^0}^{\pm} = \{x(t); \ \pm t \ge 0, \ \{x(t)\} \text{ is a Lipschitz continuous curve in } \mathbf{R}_+^{n+1}$$

satisfying $(d/dt)x(t) \in \Gamma(p(x_0(t), \cdot), \vartheta)^* \text{ a.e. } t \text{ and } x(0) = x^0\}$
 $(\subset \{x; \ x_j = x_j^0 \ (n'+1 \le j \le n)\}).$

Concerning C^{∞} well-posedness we have the following

Theorem 1. (CP) has a unique solution $u \in C^2([0,\infty); \mathcal{D}'(\mathbf{R}^n))$. Let $x^0 \in \overline{\mathbf{R}^{n+1}_+}$. If u satisfies (CP) and

$$(\operatorname{supp} f \cup \{0\} \times (\operatorname{supp} u_0 \cup \operatorname{supp} u_1)) \cap K_{x^0}^- = \emptyset,$$

then $x^0 \notin \operatorname{supp} u$. Moreover, (CP) is C^{∞} well-posed.

Remark. We assume that (H), (F) and (A) are satisfied. Moreover, we assume that the $a_{j,k}(x_0)$ are polynomials of x_0 , for example, when $n' \ge 3$. Then (CP) is C^{∞} well-posed if and only if (L) is satisfied.

For the proof of Theorem 1 we refer to [W].

2. Main results

Definition 1. Let $z^0 \equiv (x^0, \xi^0) \in \mathbf{R}^{n+1}_+ \times (\mathbf{R}^{n+1} \setminus \{0\})).$

(i) The localization polynomial $p_{z^0}(X)$ at z^0 is defined by

$$p(z^0 + sX) = s^{r(z^0)}(p_{z^0}(X) + o(1))$$
 as $s \to 0$, $p_{z^0}(X) \neq 0$ in $X \in \mathbf{R}^{2n+2}$

(ii) The generalized Hamilton flows $K_{z^0}^{\pm}$ are defined by

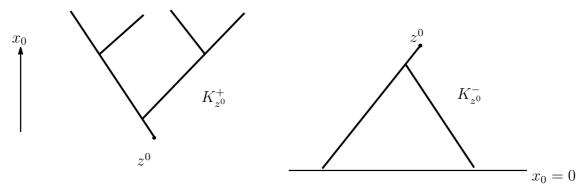
$$K_{z^0}^{\pm} \equiv \{z(t); \ \pm t \ge 0, \ \{z(t)\} \text{ is a Lipschitz continuous curve in } T^* \mathbf{R}^{n+1}_+ \setminus 0$$

satisfying $(d/dt)z(t) \in \Gamma(p_{z(t)}, \widetilde{\vartheta})^{\sigma}$ a.e. t and $z(0) = z^0\}.$

Here $\widetilde{\vartheta} \equiv (0, \vartheta) \in \mathbf{R}^{2n+2}$, $\Gamma^{\sigma} = \{X \in \mathbf{R}^{2n+2}; \sigma(Y, X) \ge 0 \text{ for any } Y \in \Gamma\}$ for $\Gamma \subset \mathbf{R}^{2n+2}$ and σ denotes the symplectic form on $T^*\mathbf{R}^{n+1}$.

Remark. $p_{z^0}(X)$ is hyperbolic w.r.t. $\tilde{\vartheta}$.

Let $z^0 \equiv (x^0, \xi^0) \in \mathbf{R}^{n+1}_+ \times (\mathbf{R}^{n+1} \setminus \{0\}))$. If $\xi^{0'} = 0$, then $K_{z^0}^{\pm} = (K_{x^0}^{\pm} \cap \mathbf{R}^{n+1}_+) \times \{\xi^0\}$. If $p(x_0^0, \xi_0^0, \xi^{0'}) \neq 0$, then $K_{z^0}^{\pm} = \{z^0\}$. Moreover, $K_{z^0}^{\pm}$ are the broken null bicharacteristics of p in $T^* \mathbf{R}^{n+1}_+ \setminus 0$ emanating from z^0 in the direction where $\pm x_0$ increase, if $\xi^{0'} \neq 0$ and $p(x_0^0, \xi_0^0, \xi^{0'}) = 0$. Assume that $\xi^{0'} \neq 0$ and $p(x_0^0, \xi_0^0, \xi^{0'}) = 0$.



 $K_{z^0}^{\pm}$ branch at every double characteristic point. Each segment is a null bicharacteristics. Each null bicharacteristics satisfies the following:

$$\begin{cases} (d/dx_0)x''(x_0) = (\mp \nabla_{\xi'} \sqrt{a(x_0,\xi')}|_{\xi'=\xi^{0'}}, 0, \cdots, 0) \\ \xi_0(x_0) = \pm \sqrt{a(x_0,\xi^{0'})}, \quad \xi''(x_0) = \xi^{0''} \end{cases}$$

By continuity $K_{z^0}^{\pm}$ can be defined as sets in $\overline{\mathbf{R}^{n+1}_+} \times (\mathbf{R}^{n+1} \setminus \{0\})$ for $z^0 \in \overline{\mathbf{R}^{n+1}_+} \times (\mathbf{R}^{n+1} \setminus \{0\})$.

Definition 2. Let $\delta > 0$ and $f \in C([0, \delta]; \mathcal{D}'(\mathbf{R}^n))$. $WF_0(f) \subset T^*\mathbf{R}^n \setminus 0$ can be defined as follows: We say that $z^{0''} \equiv (x^{0''}, \xi^{0''}) \notin WF_0(f)$ if there are $\chi(x'', \xi'') \in S^0_{1,0}(\mathbf{R}^n)$, which is elliptic at $z^{0''}$, and $\delta' > 0$ such that $\chi(x'', D'')f \in C([0, \delta']; H^{\infty}(\mathbf{R}^n))$.

Remrk. (i) The above definition is a variant of Chazarain's definition. (ii) $z^{0''} \equiv (x^{0''}, \xi^{0''}) \notin WF_0(f)$ if and only if there are a neighborhood U'' of $x^{0''}$, a conic neighborhood Γ'' of $\xi^{0''}$ and $\delta' > 0$ such that for any $\varphi \in C_0^{\infty}(U'')$ there are $C_N > 0$ ($N \in \mathbf{N}$) satisfying

$$|\mathcal{F}_{x''}[\varphi(x'')f(x)](\xi'')| \le C_N \langle \xi'' \rangle^{-N}$$

for $N \in \mathbf{N}$, $x_0 \in [0, \delta']$ and $\xi'' \in \Gamma''$, where $\mathcal{F}_{x''}$ denotes the partial Fourier transformation with respect to x''.

Now we can state our main results.

Theorem 2. (I) Let $u \in \mathcal{D}'(\mathbf{R}^{n+1}_+)$ satisfy, with $\delta > 0$, $u \in C^2([0, \delta]; \mathcal{D}'(\mathbf{R}^n))$, and let $z^0 \equiv (x^0, \xi^0) \in WF(u)$, where $x_0^0 > 0$.

(i) When
$$0 < t < x_0^0$$
, $WF(u) \cap K_{z^0}^- \cap \{x_0 = t\} \neq \emptyset$ if $WF(Pu) \cap K_{z^0}^- \cap \{x_0 \ge t\} = \emptyset$.

- (ii) When $t > x_0^0$, $WF(u) \cap K_{z^0}^+ \cap \{x_0 = t\} \neq \emptyset$ if $WF(Pu) \cap K_{z^0}^+ \cap \{x_0 \le t\} = \emptyset$.
- (iii) If $WF(Pu) \cap K_{z^0}^- \cap \{x_0 > 0\} = \emptyset$, then

$$(\bigcup_{j=0}^{1} WF((D_{0}^{j}u)(0, x'')) \cup WF_{0}(Pu))$$

$$\cap \{(x'', \xi''); \ (0, x'', \xi_{0}, \xi'') \in K_{z^{0}}^{-} \text{ for some } \xi_{0} \in \mathbf{R}\} \neq \emptyset.$$

(II) (i)
$$\bigcup_{k=0}^{2} WF_0(D_0^k u) = (\bigcup_{j=0}^{1} WF((D_0^j u)(0, x'')) \cup WF_0(Pu)).$$

(ii) Assume that the $a_{j,k}(x_0)$ can be extended to \mathbf{R} so that $a_{j,k}(x_0) \in C^2(\mathbf{R})$ and $a(x_0,\xi') \geq 0$ and that $Pu \in C^{\infty}(\overline{\mathbf{R}^{n+1}_+})$, for simplicity. If t > 0 and $(x^{0''},\xi^{0''}) \in \bigcup_{j=0}^1 WF((D_0^j u)(0,x''))$, then

$$WF(u) \cap \{(x,\xi); x_0 = t \text{ and } (x,\xi) \in K^+_{(0,x^{0''},\xi^0)} \text{ for some } \xi^0_0 \in \mathbf{R}\} \neq \emptyset.$$

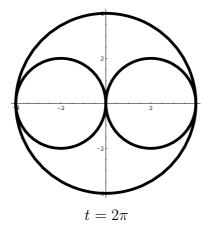
Let us illustrate Theorem 2 with some figures. Assume that $Pu \in C^{\infty}(\overline{\mathbf{R}^{n+1}_+})$,

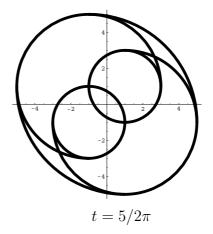
 $K_{z^0}^+ \cup K_{z^0}^-$

for simplicity, and that $z^0 \in WF(u)$. In x_0 the right figure the intersection $K_{z^0}^+ \cap$ $\{x^0 = t_1\}$ consists of 4 points. Then $x_0 = t_1$ Theorem 2 insists that at least one point of these 4 points in the intersection must belong to WF(u). Similarly, $z^0 \in WF(u)$ at least one point of 2 points of the intersection $K_{z^0}^- \cap \{x^0 = t_2\}$ must belong $x_0 = t_2$ to WF(u) by Theorem 2. Moreover, at least one point of 4 points of $\{(x'', \xi'');$ $x_0 = 0$ and, for simplicity, $Pu \in C^{\infty}(\overline{\mathbf{R}^{n+1}_{+}})$. In the right figure the broken curves are x_0 equal to $\bigcup_{\pm} K^+_{(0,x^{0\prime\prime},\pm\sqrt{a(0,\xi^{0\prime})},\xi^{0\prime\prime})}$. The intersection of the broken curves and $x^0 = t$ $\{x^0 = t\}$ consists of 4 points in this figure. Theorem 2 insists that at least one of these 4 points must belong to WF(u).

3. Examples

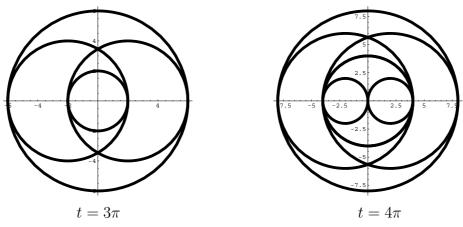
Example 1. Let n = n' = 2, $a(x_0, \xi'') = (-\xi_1 \sin x_0 + \xi_2 \cos x_0)^2$. Then $\bigcup_{\xi \neq 0} K^+_{(0,\xi)} \cap \{x_0 = t\}$ is the following:





 $z^{0''} \in \cup_{i=0}^{1} WF((D_0^j u)(0, x''))$

 $x_0 = 0$

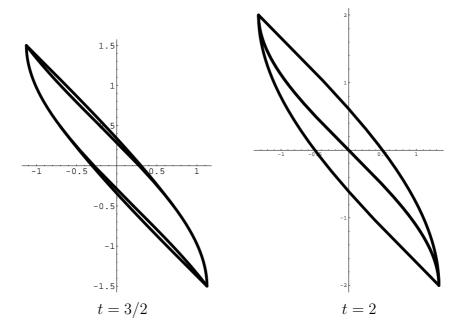


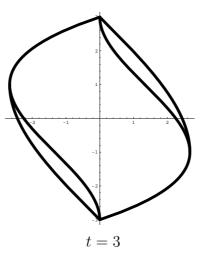
If E(x) satisfies

$$\begin{cases} P(x, D)E(x) = 0 & \text{in } \mathbf{R}^3_+, \\ E(0, x'') = 0, \quad (D_0 E)(0, x'') = i\delta(x'') & \text{in } \mathbf{R}^2, \end{cases}$$

then sing supp $E \subset \bigcup_{\xi \neq 0} K^+_{(0,\xi)}$. We could not prove the equality.

Example 2. Let n = n' = 2, $a(x_0, \xi'') = ((x_0^2 - 2x_0)\xi_1 + \xi_2)^2$ and $P(x, \xi) = p(x_0, \xi)$. Then sing supp $E = \bigcup_{\xi \neq 0} K_{(0,\xi)}^+$ and $\bigcup_{\xi \neq 0} K_{(0,\xi)}^+ \cap \{x_0 = t\}$ is as follows:





Here, in order to prove the equality we have used the fact that $E(x_0, -x'') = E(x)$ and results on branching of singularities for operators with non involutive characteristics given by Hanges and Ivrii.

4. Outline of Proof of Theorem 2

In order to prove Theorem 2 (I) (i) or (ii) we use results given in [KW]. To prove Theorem 2 (I) (iii) and (II) we apply the same arguments as used in [KW]. Let $z^0 \in T^* \mathbf{R}^{n+1}_+$ satisfy $|\xi^0| = 1$, and choose $\vartheta^0 \in \Gamma(p_{z^0}, \widetilde{\vartheta})$ so that $\sigma(r(z^0), \vartheta^0) = 0$, where $r(x, \xi) = \sum_{j=0}^n \xi_j \frac{\partial}{\partial \xi_j}$. Put

$$\begin{split} \varphi(z;\kappa) &= \tilde{\varphi}(z;\kappa)(1+\tilde{\varphi}(z;\kappa)^2)^{-1/2},\\ \tilde{\varphi}(x,\xi;\kappa) &= \sigma(\vartheta^0, (x-x^0,\xi/|\xi|-\xi^0)) + \kappa(|x-x^0|^2+|\xi/|\xi|-\xi^0|^2),\\ \Lambda(x,\xi) &= B\Psi(\xi/h)(\varphi(x,\xi;\kappa)-\nu)\log\langle\xi\rangle_h + l\log(1+\delta\langle\xi\rangle_h),\\ P_\Lambda(x,D) &= (e^{-\Lambda})(x,D)P(x,D)(e^{\Lambda})(x,D), \end{split}$$

where $h \geq 1$, $\kappa, B, l, \nu > 0$, $\delta \in [0, 1]$, $\langle \xi \rangle_h = (h^2 + |\xi|^2)^{1/2}$ and $\Psi(\xi) \in S_{1,0}^0$ satisfies $\Psi(\xi) = 1$ for $|\xi| \geq 1$ and $\Psi(\xi) = 0$ if $|\xi| \leq 1/2$. We note that $-H_{\varphi}(z^0) \equiv (-(\nabla_{\xi}\varphi)(z^0), (\nabla_x\varphi)(z^0)) = \vartheta^0$. In order to prove Theorem 2 (i) it suffices to show the following microlocal Carleman type estimates, choosing c_0, c_1, h so that $0 < c_0 < x_0^0 < c_1$ and $h \gg 1$: For any $\kappa > 0$ there are $\nu_0 > 0$, $\chi_k(x,\xi) \in S_{1,0}^0$ (k = 1, 2) and $l_k \in \mathbf{R}$ (k = 1, 2, 3) such that the $\chi_k(z)$ are positively homogeneous of degree 0 for $|\xi| \geq 1$, $\chi_k(z) = 1$ near z^0 , and "for any $\nu \in (0, \nu_0]$ there is $B_0 > 0$ such that Γ for any $B \geq B_0$ there is $l_0 > 0$ such that for any $l \geq l_0$ there are $\delta_0 \in (0, 1]$ and C > 0 satisfying

$$\|\chi_1(x, D/h)v\|_{l_1} \le C\{\|P_{\Lambda}(x, D)v\|_{l_2} + \|v\|_{l_1-1} + \|(1-\chi_2(x, D/h))v\|_{l_3}\}\$$

if $v \in C_0^{\infty}((c_0, c_1) \times \mathbf{R}^n)$ and $0 < \delta \leq \delta_0$. "I Here $\|\cdot\|_l$ denotes the Sobolev norm of order l. So an essential part is to show the above estimates. We omit it as it is

long. The proof of Theorem 2 will be given in a forthcoming paper.

References

[IP] V. Ja. Ivrii and V. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Uspehi Mat. Nauk 29 (1974), 3–70. (Russian; English translation in Russian Math. Surveys.)

[W] S. Wakabayashi, On the Cauchy problem for second-order hyperbolic operators with the coefficients of their principal parts depending only on the time variable. (located in http://www.math.tsukuba.ac.jp/~wkbysh/)

[KW] K. Kajitani and S. Wakabayashi, Propagation of singularities for several classes of pseudodifferential operators, Bull. Sc. math., 2^e série, **115** (1991), 397–449.