
9th International Conference on Fracture & Strength of Solids 

June 9-13, 2013, Jeju, Korea 

1 

Stress Singularity of the Obtuse Notch Tip for the Case of a Notch 

lying along the Bi-material Interface 

Takeshi Tane
1,*, Takeshi Uchida

1
, Toru Sasaki

2
 and Hiroki Hamano

3
 

1
Department of Mechanical Engineering, Kitakyushu National College of Technology, Kitakyushu, Japan 

2
Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan 

3
A professor emeritus at the Matsue National College of Technology, Matsue, Japan 

Abstract: The authors have previously studied the stress singularities for a crack tip with various 
open cracks meeting at the interface between different materials for plane problems. Based on these 

results, this paper deals with the linear elastic stress fields near a crack and smooth notch that lie along 

the interface of two dissimilar materials. An analytical solution for the crack and notch tip is given in 

general terms according to Muskhelishvili’s method based on complex stress functions. Arbitrary 

constants of those functions are determined by the boundary conditions for stresses along the notch 

surface and continuity conditions for stresses and displacements on the interface. By using Bogy’s 

method, α-β lines are shown for various open cracks and smooth notches. Also, it is found that these 
equations agree with the foregone solutions of Lin & Mar and the authors. 
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1. Introduction 
Stress concentrations are caused along the interface of dissimilar materials, cracks, and notches. 

Because many structures are designed for safety, it is important to obtain the stress distributions at 

these positions. 

The authors already presented several solutions for stress singularities using two-dimensional elastic 

theory for isotropic and anisotropic composite materials [1], [2]. For example, stress singularities for a 

notch, which has opening angles and is at the interface of three dissimilar isotropic materials, are 

discussed considering the continuity conditions for stresses and displacements at the interfaces and the 

boundary conditions for stresses on the notch surface. 

Generally speaking, a notch tip has no tip radius [3]-[5], but this study allowed a notch tip radius. In 

this paper, such notches are called smooth notches. Singular solutions are calculated for a smooth notch 

with an opening angle and where the notch meets the interface of two dissimilar materials. It is 

assumed that the regional angles of both materials are equal and that both materials behave as isotropic 

bodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Analytical theory 
2.1 Basic equations of elastic mechanics 

First, the equilibrium equations for two-dimensional problems without body forces are shown in the 

polar coordinate system (r, θ) as follows: 
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Fig. 1 Coordinate system. 
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Second, the geometrical equations, which characterize the relationship between strains and 

displacements, are obtained: 
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where ur and uθ are the displacements in the r and θ directions, respectively. 
Third, the constitutive equations for an isotropic elastic body in a two-dimensional problem are 
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for plane stress, where E and ν are the Young’s modulus and Poisson’s ratio, respectively, and G = E/(1 
+ ν) is the shear modulus of the material. 
 

2.2 Governing equation and general solution 

From Eq. (2), the strain components must satisfy the following compatibility equation of strain: 

.0
11112
2

2

2

2

22

2

=
∂

∂
−

∂∂
∂

−
∂
∂

−
∂
∂

+
∂

∂
+

∂
∂

θ
γ

θ
γε

θ
εεε θθθθ rrrr

rrrrrrrrr
 (4) 

Also, introducing Airy’s stress function F(r,θ), which satisfies Eq. (1) automatically, the stress 
components in Eq. (1) are denoted as 
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Substituting Eq. (5) into Eq. (3) and then substituting the obtained equation into Eq. (4), the stress 

function F must satisfy the following partial differential equation [6]: 
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The solution of the biharmonic equation (6) is expressed using Goursat’s complex stress functions 

φ(z) and ψ(z) as 
,)]()(Re[),( zzzrF ψφθ +=  (8) 

where z = x + i y = re
iθ
, and z  is its complex conjugate. These functions, φ (z) and ψ (z), are 

determined by taking into account the boundary conditions for the stresses or displacements of each 

elastic problem. 

 

2.3 Formula for the stress and displacement components of an isotropic elastic material 

By using complex stress functions, the stress and displacement components of an isotropic material 

are given by 
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where 
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3. Analytical approach 
3.1 Mapping function 

This paper presents an analytical solution for Fig. 1. However, because of the difficulty of applying 

boundary conditions for stresses on a U-shape notch, the following mapping function is introduced [7]: 

.)()( qq ivuwwfiyxz +==≡+=  (11) 

In this equation, the exponent q is related to the opening angle 2α [rad] and is expressed as 
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For example, if 2α = 0, then q = 2, if 2α = π, then q = 1, and so on. 
By introducing the mapping function expressed in Eq. (11), the focusing length r0 shown in Fig. 1 is 

represented by the radius of curvature ρ as the following equation: 
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As an example, Fig. 2 shows the mapping results for the case of 2α = 30 deg. The radius of curvature 
ρ is changed from 0 to 10 for descriptive purposes. In particular, it is noted that the curvature for the 
case of ρ = 0 (i.e., r0 = 0) coincides with a V-shape notch with an opening angle of 2α, which was 
studied by Kato and Fujitani [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Complex stress function 

In this paper, Goursat’s stress functions are assumed to be power functions of the complex variable z, 

i.e., 
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The subscript j (= 1 or 2) indicates the analytical region. The exponents λ and µ in Eq. (14) are both 
complex, and these constants are determined from the traction-free condition on a U-notch surface and 

the continuity conditions of stresses and displacements on the bi-material interfaces shown in Fig. 1. 

 

3.3 Formulations for determining stresses and displacements 

By substituting Eq. (14) into Eq. (9), the stresses and displacements of each region are expressed as 

follows: 
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Fig. 2 Map transformation from (u, v) coordinate system to (x, y) coordinate system 
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for the case of a notch opening angle of 2α = 30 deg. 
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where a1
j
 and a2

j
 are the real and imaginary parts of the complex constants aj (j = 1, 2), respectively. 

Thus, aj = a1
j
 + i a2

j
. Similarly, bj = b1

j
 + i b2

j
 and cj = c1

j
 + i c2

j
. 

 

3.4 Transformation of the stresses 

The next transformational expressions are introduced by applying the boundary conditions for the 

stresses mentioned below. That is, the stress components in curvilinear coordinates (u, v) shown in Fig. 

2 are obtained as 
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where the stress components on the right side are given in polar coordinates (r, θ) and are computed 
easily from Eq. (15). 

 

4. Evaluation of λλλλ    parameters 
4.1 Boundary conditions and continuity conditions 

First, the boundary conditions for the stress components σu and τuv in Eq. (17) on a U-notch surface 

are represented as 
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by taking into account the traction-free conditions on the surface. In particular, the above conditions are 

reduced to the following equations far away from the notch tip by considering Eq. (17): 










=

=

⇒=
−

−→
→∞

−

+→
→∞

>>
=

,0)(lim

,0)(lim

0)(
21

2/

11

2/

|| 0

0

θ
λ

πθ

θ
λ

πθ

σ

σ

σ
r

r

q
r

q
r

uv
uu

j

u
 (19) 










=

=

⇒=
−

−→
→∞

−

+→
→∞

>>
=

.0)(lim

,0)(lim

0)(
21

2/

11

2/

|| 0

0

θ
λ

πθ

θ
λ

πθ

τ

τ

τ
r

q
r

r

q
r

uv
uu

j

uv
r

r

 (20) 

On the other hand, Eq. (18) leads to the following equations at the U-notch tip: 
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Next, the continuity conditions at the two-material interface for stresses and displacements are 

described as 
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 (23) 

 

4.2 Characteristic equation 

By using the boundary conditions of Eqs. (19) and (20) and the continuity conditions for the case far 

away from the tip shown in Eq. (23), the simultaneous equations related to eight real constants aij and 

bij (i = 1, 2; j = 1, 2) are derived as 
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Because the real constants aij, bij (i = 1, 2; j = 1, 2) in Eq. (24) are nonzero, the following must be 

satisfied: 
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and this determinant is able to express the following characteristic equation: 
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where α and β are called Dundurs’ parameters [8] and are represented by 
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A, B, C, and F in Eq. (26) are complex, and they are expressed as 
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If the two regions [I] and [II] in Fig. 1 are made of the same materials, it is noted that Dundurs’ 

parameters α and β are both equal to zero because the numerators of Eq. (28) are both equal to zero. 
Then, Eq. (26) is reduced as follows [9]: 

.0)(sinsin 222 =− λθθλ  (30) 

 

5. Example calculations 
In this section, it is assumed that the ratio of the modulus of rigidity is m = G2/G1 = 1, 5, 10, 20, 100, 

and the Poisson’s ratios of both materials are 0.30. Figure 3 shows the singular solutions λ derived 
from Eq. (26) for any aperture angle 2α along the abscissa. These results correspond to the existing 
results computed by Hamano and Hirashima [1]. 

For a homogeneous material (i.e., m = 1), the values of λ are always real numbers, which correspond 
to fracture modes I and II. If 2α = 0, the stress singularity is λ = 0.5 as usual. 
For an arbitrary ratio of the modulus of rigidity m, except in a homogeneous material (m = 1), the 

singular solution λ has two real roots or one complex root. From this, it is found that the range of the 
opening angle 2α (where the singular solution goes from two real solutions to one complex solution) is 
expanded so that m becomes a large number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the singular solution λ is shown in Fig. 4 using α-β coordinates, where α and β are Dundurs’ 
parameters expressed in Eq. (27). If the model of Fig. 1 consists of a homogeneous material, the 

corresponding point on the α-β plane is the origin, i.e., (α, β) = (0, 0). At this point, it is apparent that 
there are no stress singularities when 2α is greater than or equal to 180 deg. because λ is greater than 1 
based on Fig. 4(a)-(c). However, when 2α is less than 180 deg., there is a stress singularity due to the 
decrease in cross-sectional area near the smooth notch even for a homogeneous material based on Fig. 

4(d)-(f). That is, the value of the singular solution λ becomes less than 1. 
On the other hand, if the model of Fig. 1 is a common composite material, the corresponding 

coordinate values on the α-β plane are calculated by Eq. (27) using the ratio of the modulus of rigidity 
m = G2 / G1 and the Poisson’s ratio. If the opening angle 2α is greater than or equal to 180 deg., a stress 
singularity may occur at the notch tip because of the combination of materials based on Fig. 4(a)-(c). 

Also, in this case, the singular solution λ is always a real number. When 2α is less than 180 deg., there 
are stress singularities for all combinations of the two materials, and the order of the singularity is 

higher, i.e., the value of the real part of λ approaches 0.5 based on Fig. 4(d)-(f). It is also noted that Fig. 
4 corresponds to Bogy’s result if the singular solutions are real and corresponds to Koguchi’s result if 

the singular solutions are complex [3], [10]. 

 

6. Conclusion 
In this paper, stress singularities near the apex of a smooth notch with an arbitrary tip radius ρ that is 
at a bi-material interface, as shown in Fig. 1, were discussed. For ease of computation, the mapping 

function expressed in Eq. (11) was introduced, so applying boundary conditions and continuity 

conditions became very easy. 

In the numerical examples, the singular solutions λ were calculated based on the opening notch angle 
2α by solving the algebraic equation (26) given by Dundurs’ parameters. In the result, these solutions 

Fig. 3 Singular solution λ versus notch opening angle 2α. 
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coincided 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coincided with the existing solutions, which were studied by Hirashima and Hamano for composite 

materials and by Williams for homogeneous materials (i.e., the ratio of the modulus of rigidity is m = 1). 

As described in Section 4, because equation (26) does not include the effect of the notch tip shape, the 

singular solution λ of this study coincides with the existing solution for a V-shape notch. Thus, the 
effect of the notch tip shape on the stress and displacement distributions of a composite material occurs 

only in the region near the notch tip. 

Next, α-β diagrams were shown for arbitrary opening notch angles 2α, and it was found that these 
diagrams coincide with Bogy’s solution unless the singular solution λ becomes a complex number. If λ 
is complex, then the α-β diagrams coincide with Koguchi’s result. 
However, because there are some problems in setting the boundary or continuity conditions, another 

singular solution µ, which presents the effect of the notch shape, was not determined here. Therefore, 
the following future areas of study are proposed: 

(1) Constructing an analytical technique to obtain the solution µ 
(2) Computing the stress and displacement distributions near a smooth notch tip 

 

 

 

(c) 2α = 180 deg. (f) 2α = 0 deg. 

(b) 2α = 210 deg. (e) 2α = 40 deg. 

(a) 2α = 260 deg. (d) 2α = 120 deg. 

Fig. 4 α-β diagrams for singular solution λ. 
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