University of
Wisconsin—Madison

DEPARTMENT OF MATHEMATICS

725 Van Vleck Hall ’
480 Lincoln Drive
Madison, WI 53706-1388

Professor Paul Terwilliger
Mathematics Department
University of Wisconsin
Madison, WI 53706

Dear Paul

Telephone:(608) 262-3298
E-Mail: brualdi@math.wisc.edu
Fax Number: (608) 263-8891

February 11, 2013

This is to confirm that on May 15, 1987 the journal Linear Algebra and its Applications received

the paper

Leonard Pairs and Dual Polynomial Sequences by Paul Terwilliger

for possible publication. The paper was reviewed favorably but a revision was never submitted.

LA

Richard A. Brualdi
Editor-in-Chief, Linear Algebra and
its Applications -



LEONARD PAIRS AND

DUAL POLYNOMIAL SEQUENCES

by Paul Terwilliger
Department of Mathematics
University of Wisconsin

Madison, Wisconsin 53706

1980 Mathematics Subject Classification. Primary 05CS0 15A03 33A65

Partially supported by NSF grant DMS 8600882



Running head: Leonard pairs
Proofs to be sent to:

Paul Terwilliger
Department of Mathematics
University of Wiéconsin
480 Lincoln drive

Madison, Wisconsin 53706




LEONARD PAIRS AND DUAL SEQUENCES: Symbols used.
¢ OGreek epsilon
{} curley brackets
* star

2 capitsl Greek sigma

R bold face R
<,> brackets

[,] brackets

3,6 arrow

© Greek theta
& Greek deits
O Greek sigma
A Greek lambds
B Greek beta
¥ Greek gamma

w Greek omega
@ circle with bars
U union symbol

C inclusion symbol
O box

I bold face l.

Loed,
No*ﬁ 4’0 Frm}er i Mo Suloscnp'és ar€ sh,re

*

\/- l* 3'hou‘ o( rCCLOe VCH

(24




ABSTRACT

Let V be afinite dimensional vector space over R. We call

diagonalizable linear transformations A, A* ¢ Endp(V) a Leonard pair

with respect to orderings VO, v,,...,vd and VO*, V] *,...,Ve* of their

respective maximal eigenspaces, if
AVI* EV}_]* + V]* + Vi"‘i* (0gige) (V_}*=Ve+‘* =0),

EsAE; =0 9F Ji-]31=1 (0s1,j<0), and

J

Ei*AEJ-*=O it Ji-jl=1 (0<i,j<e),

where E;: V2V (0<isd), Ej*:V»Vy*(0<i<e) arethe projections. The

pair is thin if dim(v,) = dim(\/j*) =1 (0<i<d, 0<j<e). In this paper we

classify the thin Leonard pairs by obtaining a natural 1-1 correspondence
between them and the pairs of finite 3-term recurrent polynomial
sequences that are dual in the sense of Leonard's theorem. The polynomials

are essentially the eigenbases for the transformations. We then define an

(infinite dimensional) Leonard algebra over R by generators and
relations, and show all thin Leonard pairs arise from irreducible

representations of these algebras. A Leonard pair A, A* is guasi
A-bipartite (resp. guasi A*-bipartite) if E{*AE;* = 0 (1<ige-1) (resp.
if EjAXE; =0 (1<i<d-1)), and summetric if Aand A* are each
self-adjoint with respect to the same positive definite bilinear form on

V. We then extend the methods used on the thin caée to obtain a

classification of all symmetric quasi A- or A*- bipartite Leonard pairs.




1. INTRODUCTION.

Let V be a finite dimensional vector space over R, andlet Ae¢ EndR(V)

be any diagonalizable linear transformation. Let Vo, Vy,..,Vy be the
maximal eigenspaces for A, and let Ey Vo2V (0<igd) be the
corresponding projections (so Egt B+t Eg=1, E]-EJ- = SU-E,-, 0<i, j=d).
Let A* ¢ Endp(V) also be diagonalizable, with eigenspaces Vi* and
projections E;* (0<ige). Throughout this paper, and unless otherwise
indicated, X_y =Xq41= %o, 1% =0 for any variable x.

DEFINITION 1.1 The above transformations A, A* form a Leonard pair

(with respect to the given orderings of their eigenspaces) if

AV Vi + VX s Vypq (O<i<e) e

AV, C V. o+ Vi + V., (0<igd). (1.2)
i="'i-1 i i+1

We also assume the nondegeneracy conditions

EAA*E; = 0 if |i-j] =1 (0, j<d) (1.3)

J

EI*AEJ* z 0 it li-jl =1 (0<i, j<e). (1.4)

We call d, e the diameters of the pair. Spec(A) ¢ R%*! and

Spec(A*) ¢ R will denote the lists of distinct eigenvalues of A and

A¥*, respectively, with the induced ordering.
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Leonard pairs A, A* ¢ Endp(V) and C,C*¢ Endp(W) are equivalent
if Spec(A) = Spec(C), Spec(A*) = Spec(C*), with A=o~!C o,

A% = G”IC*G for some invertible R- linear map o: V3 W. We do not

distinguish between equivalent pairs.

DEFINITION 1.2. The Leonard pair A, A* in Definition 1.1 is thin if

dim(V,) = dim(Vj*) =1 (0<i<d, Ogj<e) (so d=e=dim(V) - 1). A A*is

irreducible if V contains no nonzero, proper A- and A*- invariant
subspace. A, A* is quasi A- bipartite (resp. quasi A*- bipartite) if
E{*AE;* = 0 (1<i<e-1) (resp. E;AXE; =0 (I<i<d-1)). A, A% is symmetric

if there exists a positive definite bilinear form <,> on V with respect
to which Aand A* are self-adjoint (i.e. for C = A or A%, <Cu,v> = <u,Cv>

forall u,vev).

(n this paper we begin a classification of Leonard pairs. Our main

motivation is their appearance in the study of P-and Q- polynomial

association schemes (indeed, the matrices A, Xg in Terwimger [6,Thm. 3]

form a symmetric Leonard pair). We shall develop this connection in a
future paper. Here we focus on the thin case and the symmetric quasi-
bipartite case, obtaining the following results.

(1) We show the classification of thin Leonard pairs is equivalent to
the finite dimensional version of Leonard's Theorem
(Bannai and 1tol3, p2631), which goes as follows. Call a finite polynomial

sequence (U(x))q = {ug(x)=1, u, (X),..,uq(x), Ugs 1(x)} 3-term recurrent if

XUi(X) = C]'Ui_]()() + aiUi(X) + b,ulq(x) (0<igd-1)

and
XUg(X) = Cqig- 1 (%) + aguq(x) + gy 1 (%)



)
for some cj, a;, b; ¢ R (0si<d), where ¢; =0 (1<i<d), b; = 0 (0sid-1),

and Cg, by=0. The €y, a3, by are the parameters of (u(x))d. A vector

£=1080,8¢,..84) (6; ¢ R, O<igd) is an gigenvalue sequence of (uxNy 17
the 6, are distinct roots of Ug+ 1(x). Then 3-term recurrent polynomial
sequences (u(x))q and (u*(x))q are dual with respect to eigenvalue
sequences © and 6%, respectively, if

Leonard's Theorem provides a classification of all dual sequences.. By
that theorem the (u(x))q and (u*(x))y are essentially Askey-Wilson
polynomials{1,2], including limiting cases. We establish the above
mentioned equivalence by obtaining a natural 1-1 correspondence between
the thin Leonard pairs and dual sequences. The polynomials are
essentially eigenbases for the transformations. This correspondence gives

‘aclassification of the the thin Leonard pairs.
(2) If A, Ax¢ Endp(V) is a thin Leonard pair, then there exists a

nondegenerate sgmmetm‘c bilinear form on V with respect to which A
and A* are self-adjoint. The form is unique up to scalar multiplication.
A,A* is symmetric if and only if the corresponding dual polynomial

sequences are each orthogonal.
(3) The Leonard algebra L on a, a* with parameters 8, ¥, ¥, §, §%,

we R isdefined (over R) by generators a, a* and relations
ala* - Baa*a + a*al + Fla*a +aa*) + sa* + ¥*a + wa ¢ Center(L)

a*za - Ba*aa* + az:r*2 + ¥*(aax+a*a) + 5%a + Yax2 + wa* ¢ Center(L),



where Center{L) = {b] be L, ba=ab and ba*=a*b }.
We say a finite dimensional representation o:L 3 Endgp(V) is

self-adjoint (resp. symmetric) if there exists a nondegenerate symmetric
bilinear form (resp. pésitive definite form) <,> on V withrespect to

which o(a) and o(a*) are self-adjoint. Then any thin Leonard pair is of
the form o(a), o(a*), with ¢ an irreducible self-adjoint representation
of a Leonard algebra on a, a*. The algebf*a is unique if the diameter d > 3.
Our converse is slightly weaker. Assume the parameter $ of a Leonard
algebra L is such that g (q+q_]= 8) isnot aprimitive nth root of unity
forany n (n>3). Then o(a), o(a*) is a thin Leonard pair for any finite
dimensional, irreducible, symmetric representation ¢ of L.

We then consider quasi-bipartite Leonard pairs and prove

(4) Let the Leonard pair A, A* be irreducible, symmetric, and quasi A-
or A*-Dbipartite. Then A, A* is thin. This leads to a classification
(thm. 4.2) of all symmetric quasi A- or A*- bipartite Leonard pairs.

We finish with some open problems.

2. THIN LEONARD PAIRS AND DUAL SEQUENCES

In this section we obtain a natural 1 -1 correspondence between the
thin Leonard pairs and dual sequences. We begin with a few technicalities,

LEMMA 2.1. Let A, A% ¢ Endp(V) be a thin Leonard pair. Then (i) V has

no proper A- (resp. A*-) invariant subspaces containing Vg* (resp. Vo).

Inparticular, (if) any feEndp(V) satisfying fVp*=0 and fA=Af

(resp. fV5=0 and fA*=AXf) is 0.




proof. Statement (i) is immediate from (1.3),(1.4). Statement (if)
is obtained by applying (i) to {viveV,fv=0}. O

DEFINITION 2.2. The yalencies Ko=1, Ky,..Kg Of @ 3-term recurrent

sequence (u(x))q4 are given by

k]' = bob]'-'bi-I/C]CQ'“Ci (O<igd), (2.1)

where the ¢, b j are parameters of (u(x))y.

THEOREM 2.3. (i) Let 3-term recurrent sequences (ux))q and (u*(x))y be

dual with respect to eigenvalue sequences & = (90,91,...,ed) and
6% = (6p*,01%,...64%). Then the transformations A, A* ¢ Endp(V),
V = R[x}/(uq, 1(x)) defined by
Au;(x) = xu;(x),  A*u;(x) =8;*u;(x) (0<i<gd), (2.2)
form a thin Leonard pair with Spec(A) = 6, Spec(A¥*) = g *

Furthermore (ii) any thin Leonard pair may be uniquely realized in

this way.

Proof of (i), Let C]‘, a‘-, b], k] and Ci*’ a]'*, b}*, k*] (0<i<d) be the

parameters and valencies of (u(x))qand (u*(x))y, respectively, and set

d
u:;¥ = 3 U](eJ)k]U](X) (0gj<a).

J
i=0




we must verify (1.1) - (1.4). But (1.1) holds by (2.2) and
AUi(x) = ciui_q(x) *+ a;u;(x) + bjujy (%) (O<i<d). (2.3)
Now (1.2) holds, for by (2.3) we have

AUj* = eJUJ* (Oﬁjgd), (2.4)

and using (1.5) we obtain
A*U]* = CJ*UJ_]* + aJ*UJ* + bJ*UJ_,_]* (Oﬂjgd) (23)

Line (1.3),(1.4) follows from by, by* =0 (0<igd-1), Cy, Cy*#0 (I<isd),

SO A,.A* is the desired Leonard pair.

Proof of (if). Now let A, A* ¢ Endp(W) be any thin Leonard pair, with
Spec(A) = (84,04 ~9q) and Spec(A*) = (6*,8; *,0g™):
The Standard A-basis of the pair is a sequence X = Vo, VipVg)
(0=v; €V;* 0<isd) where vg+ vy *.+ v eV, The Standard A*-basis
I8 X*={vg*, v{*,.., vg*) (0=v;* ¢ V;, Osisd), where
Vo +V X+t vyt e VX X and X* are unique up to scalar

multiplication.

We note the standard bases exist, for pick any nonzero v* e Vg, Then

X = (Eg*v*, Ey*v¥,..Eg*v*} must span V by (i)of Lemma 2.1, and is

therefore a standard basis. The construction of X* is similar.




9

(As an example, in the proof of (1) the vectors vy =Kk;u;(x), vi* =k;*u;*

(O<i<d) form standard A- and A¥*- bases, respectively).

By (1.1) - (1.3), we now have
AV" = bi-l"i—l" Vi Y Civ Vit (V]' e X, 0<igd) (2.6)

A*Vi* = bi"]*vi"]* + ai*V‘* + C“‘]*V“]* (Vi* < X*, 0<i<d) (2.7)

for some cj, ay, by, €%, a;%, bj* ¢ R, (0<i<d), where ¢y, ¢;* = 0 (1<i<d),
b;, by* # 0 (0<i<d-1), and Cos Co™s by bg™ = 0. Now set

and

Define the nondegenerate symmetric bilinear form <, > of A, A* on W by

v = Biky (v vgeX, 0<ij<d). (2.8)

Then one verifies A and A* are self-adjoint with respect to ¢, >, and

that up to scalar multiplication, <,» is unique with this property.

In particular, there existsa c ¢ R where

Wi*¥ V% = o,k (vi* v:*e X* 0<i,j<d)
i)Yy i iV ]

We now define the dual A-basis Y = {ug, uy,.., g} and dual A*-basis

Y* = {ug*, uy*,.., Ug*} by

Ui = V]/k] U}'* = V]*/k]* (0<gigd).

Then Y and Y* are, up to scalar multiplication, the dual bases for X and
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X*, respectively, with respect to <, >. Now let u;(x), U;*(x) (O<isd+1) be
the unique polynomials satisfying

ui(Aug = us, Ui*(A*)ug* = u;* (O<igd+1).

Then (u(x))y and .(u*(x))d are 3-term recurrent with parameters the

Cy, @, by and cy*,a;%,b;* (O<i<d) from (2.6), (2.7). To see they are dual
with respect to Spec(A), Spec(A*), we compute <Uj, uj*> (0<i,j<d) two
ways. First,

g, Uy = WiAg, U

d _
= h 2<u]-(em)vm*,uj*> (where h"‘uo =VX AV X+ AR )
m=0
= chui(ej) (where < vi*,uj*> = CSU )

fl

W, Up*>u;(85)

and by symmetry

Wy, U = <uo,u0*>uj*(ei*) (0<i, j=<d).

Now <up,Un*> = 0 by the nondegeneracy of <, >, so (1.5) holds. Finally,
0~ Y g

we note the maps between the sets of thin Lenard pairs and dual sequences

implicit above and in (i) are inverses, establishing (ii). O

We may use the bilinear form (2.8) of a thin Leonard pair to interpret

the orthogo'nalitg of the associated polynomials, as follows.
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THEOREM 2.4 Let (u(x))4 and (u*(x))4 be dual sequences, with

associated thin Leonard pair A, A¥X. Then the following are equivalent.

(i) The bilinear form of A, A* is positive definite

(if) (u(x))q4 is an orthogonal sequence

(ii1) (u*(x))4 is an orthogonal sequence.

Proof. By Bannai and 1to[3, p276], (u(x))q is an orthogonal sequence if

and only if its parameters satisfy b;Ci,q >0 (Osisd-1). By (2.8), this is
equivalent to the bilinear form of A, A* being positive definite, so

(e (i), (es(iii) is similar. O
3. THE LEONARD ALGEBRA

In this section we show any thin Leonard pair is naturally associated

with an irreducible representation of an certain infinite dimensional

algebra over R.

DEFINITION 3.1. The Leonard algebra L on a, a* with parameters 8, ¥,

¥*,8,8%, weR isdefined (over R) by generators a, a* and relations

alax + a*a2 - Baa*a + ¥(axa+raax) + §a* + ¥*al + wa ¢ Center(L) (3.1)
a%x2a + ag*? - Baxaax + ¥*(aa*+a*a) + $%a + ¥ax2 + wa* ¢ Center(L).

(3.2)

Note 1. If the parameter § above satisfies B=g+ q"‘ with ge¢R,
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then L is conveniently described by generators a, a*, e, f, f* and

relations

aa* - ga*a=qe
ea-qae = Y(axa + ag*) + fa* + ¥*a2 + wa +f
a%e - qea* = ¥*(aa*+axa) + §%a + ¥a*2 + wa* + %

f, f* ¢ Center(L).

Note 2. Aleonard algebraon a, a* with parameters 8, ¥, ¥, §, 6%, w

is also a Leonard algebra on a =ha +k, a*' =h*a* + k*

(h, h*, Kk, k* ¢ R, h, h* 20), with parameters B, h¥ +k(8-2), _
hxgx + k*(B-2), h28 -2hk¥ - (B-2)k2, hx28% - Dh*k*¥* - (R-2)k*2.
hh*w - 2hk*¥ - 2h*k¥* - 2(B-2)kk*. Therefore, after substituting (and
possibly interchanging a, a*) we may assume (B, ¥, ¥*, §, %, ) is of
~the form (8,0, 0, 1 or -1, 1 or -1, ) (with w>0),
(8,0,0,0,10r=1,10r0), (8,0,0,0,0,10r0), (2,1,1,0,0,w), or
(2,1,0,0, 1or0or -1, 0). Leonard pairs are classified into “types” in
Bannai and 1to[3, p263], but those types depend on the specific

representations as well as the forms presented here.
We will need the following technical fact.

LEMMA 3.2. Let Fg: Tyees T (n23) be real numbers, with

Fo: My T n-1 distinct and o=y 3uppose
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M+ ~ (8+1) Fiep * (B+1) Figg - N7 0 (0<ign-3) (3.3)

forsome B ¢R. Thenthe q ¢ € with g+ q'l = 8 is aprimitive nth

root of unity.

Proof. There exist constants 1, o, 3 € & where
(a) Py = oy ,<><2qi + <><3q"i (0<ign) it =22 or-2

N R R (O<t<n)  if B=2

©  ry= ot Dot g (Osisn) if §= -2,

In case (a), the distinctness of FQs s Tp—-1 iMplies qi = 1 (3<ign-1),
- and rg =ry implies either q" = 1 or oz = "y, But the second
possibility implies Fy =Th-1. S0 q must be aprimitive nth root of

uhitg, as desired. Cases (b) and (c) are similar. O

DEFINITION 3.3. A finite dimensional representation (over R) of a Leonard

algebra L 1s a homomorphism O: L3 Endgp(V), with V afinite

| dimensional vector space over R. The representation is irreducible if V
has no proper, nonzero o(L)- invariant subspaces. The representation is
self-adjoint (resp. symmetric) if there exists a nondegenerate symmetric
bilinear form (resp. positive definite form) on V with respect to which

o(a) and o(a*) are self-adjoint. We now have
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THEOREM 3.4.

(i) Any thin Leonard pair is of the form o(a), G(a*), with ¢ an
irreducible, self-adjoint representation of a Leonard algebra on a, a*.
The algebra is unique if the diameter d=3. Conversely,

(i1) suppose the parameter B of aLeonard algebra L is such that g
(a+q ! =B)isnot aprimitive nth root of unity for any n(nz3). Then
d(a), g(a*) is a thin Leonard pair for any finite dimensional, irreducible,

symmetric representation o of L.

Proof of (1). Let A, A* ¢ Endg(V) be a thin Leonard pair, with

Spec(A) = (8, 84,.., 84) and Spec(A*) = (89, 81%,., 64*)

(85, ©;* ¢ R, O<igd). A, A* is irreducible by (1.3), (1.4),and V

possesses the required bilinear form by (2.8), so it suffices to prove

a=A, a* = A* satisfy relations (3.1),(3.2) for some B, ¥, ¥*,8,6% we
R. This is trivial if d=0, soassume d > 1. Then if d2 3, by Bannai and
ito [3,p.288] there exists an B ¢ R where
6]+3 "(5"‘”9”2 + (BH)GH] - 91
= 01z ~(BrD) 0% ¢ (Br1) Oy - oy
= 0 (0<i<d-3).

If d=tor2 let BeR be arbitrary. If d>2, set

¥ = B0 -6g-0p  ¥X= BO* -6y - 6%, (3.4)




andif d=1 let ¥ ¥* ¢ R be arbitrary. Now set

5 = OBy - 897 - 612~ ¥(0p + ),

8% = BOO*0,* - 0% - 6,%2 - ¥X(9y% + 61)
and define polynomials

PIX,Y) = X2 - Bxy+ Y2+ P(x+y)+ 8,

p*(x,y) = x2 - Bxy + 92 +Y*(x+ )+ 8%

Then
P(61,8141) = D*(84%,81,¢%)
=0 (0<i<d-1).

For p thisfollows from (3.5)if 1=0, (3.4) if 1=1, and
(p(ei,ei,,l) - D(ei..l,e,')) (GM - ei_])_l
- (D(Gi_],ei) - D(Gi_2,ei_1)) (91 - 61-2)_I
= GM '(B*])ei + (B+l)6H - ei_2
=0
If2<1<d-1. Thecase of p* issimilar. It now suffices to set
f] = AZA% - BAAYA + AXAZ 4 S(AXA + AAX) + BAX + Y*A2

F1% = AX2A - BAXAAX + AAXZ + X(AAX + AXA) + §%A + YAXZ

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

and prove f, + WA = zI, f;* + WA* =z*[ forsome w,z, z*¢ R, We
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first note fV; € V; (0<i<d), forif 1= j (0<i,j<d) then

Ejf]Ej =E1A*Ejp(ei, e}) vanishes if [i-jl>2 by (1.2), andif [i~jl=1

by (3.6). Inparticular f 1 commutes with A. Secondly,

for if d>2 then fVg*CVp* + V¥ + Vox by (1.1),(3.8), with
Eg*f1Eq* = Ex*AZE*(0* - BO(* + 6% + ¥%) vanishing by (3.4), Since
Avo*g_vo* *Vy*, (3.10) implies some nonzero linear transformation
foe Span(l, A, fy} satisfies foVo* = 0. But then f5 commutes with A,
s0 is identically O by (ii) of Lemma 2.1. We conclude fq+ wA=2zI for

some w, z¢ R, and similarily f1 *+ w*A* = z*I for some w*, z¥ ¢ R.

But then « = w¥, for (3.8), (3.9) immediately give

W¥(AAX - AXA) = f]*A - Afl*
= A*f1 - f‘A*
= W(AA* - A¥A).

Proof of (ii). let p(x, y) be the polynomial x2 - Bxy + g2 +¥(x+y)+ 8,
where 8, ¥, 8 are parameters of L. Let f be the expression in (3.1 ), and

let oL » Endp(V) be self-adjoint with respect to some positive definite
form <,>on V. Now f issymmetric in a, a%, so d(f) is self-adjoint
with respect to <, >. Inparticular it has an eigenvalue z ¢ R. Now

a(f) = zI by irreducibility. Since A=o(a) is self-adjoint with respect
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to < > it is diagonalizable, with maximal eigenspaces denoted by

Vo, V1..,Vy for some integer d (d20). Denote by 80, 61,.. 64 and
Eq, By, B4 respectively, the corresponding eigenvalues and projections.

Simplifying Eid(f)E}- (0<i,j<d), wefind A¥=c(a*) satisfies

1}

(8}, 8 E|AXE = 0 (1= ], 0<i,j<d), (3.11)

P(O;, O)EARE; = (z- w8 - ¥%0,DE;  (0si<d), (3.12)

Also E{A%E; =0 Implies EjA%E; =0 (0<1,]<a) by the self-adjointness of

A¥*. By irreducibility, and since p is symmetric and quadratic in (3.11),

- for an appropriate ordering of the Vi's we have

(G, D1 EjAxE; =0, 0< i< j<d) equals

{4+l 0<i<d-1) or  [(,i+ND] O0<i<d-1JU((0,d) ]}

But the second possibility cannot occur, for

P(6g, ©1) =p(®1, 85) =..= p(64_1, 64) = P(6g, Og) =0, (3.7), and Lemma 3.2
(with n=d +1, ry = ©;(0<i<d)) contradict our assumption concerning q.

Interchanging the roles of A, A*, we may also assume

20 if li-jl=1
Ej*AEj* (O$i,j$e),
=01irli-jlz2
where Eo*, Ey*,., Ec* are the projections onto the maximal eigenspaces

VO*, V] *,...,Ve* of A*. Now we are done if we can show

dim(vi)=dim(vj*)= I (O<i<d, O<j<e). This is trivial if d or e is 0, s0



18

assume d,e2 1. Let Vg € Vo* be an eigenvector for the self adjoint map
Eg*AEp*, with associated eigenvalue A ¢ R, andset v;* =Ejv, (_Oﬁisd).
Also set vy =(A-AIvye Vy* Toprove dim(Vy) =1 (0<i<d), it suffices
to show W=Spanlvg*, vi*,.,vq*} is A-and A*-invariant, and hence
equal V. A-invariance is immediate, so we are done if

EAM %, EA%, EAN;, % ¢ W (0<i<d). (3.13)
But vp* +v X+ +vg*¥=vy, AXvg=8n%vy  give

EjA¥Vi 1% + EJA%Y X + EiAXV; 1% = g%V (Osigd),  (3.14)
and (8g=AlVg* + (01-Rv * + . + (64 Ay = vy, AXv, = 81%vy give

(8- 1=MEJA*V 1 * + (8- IEjA%V* + (81, 1~ME;A%V;, (¥

= el *(e]-- J\)Vi* (O<igd), (3.15)

s0 at least (3.13) holds for 1=0,d. , Now p(e;, 6;) # 0 (1si<d-1), for
otherwise the nonzero quadratic polynomial f(x) = p(x, 6;) has roots
0i-1. 6y, ;4 1, a contradiction. Therefore E;A*vi* ¢ W (Isisd-1) by

(3.12), a fact which we may combine with (3.14), (3.15) to obtain (3.13)

for the cases 1 < i< d-1. This shows dim(V;) =1 (O<i<d). Showing
dim(vj*) =1 (0<j<e) is similar. This completes the proof of (ii) and the

Theorem. O
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3. QUASI-BIPARTITE LEONARD PAIRS

In this section we classify the symmetric quasi A- or A*-bipartite
Leonard pairs. Without loss we assume quasi A*-bipartite throughout. wWe

first look at the irreducible case.

THEOREM 4.1. Let A, A* ¢ EndR(\/) be an irreducible, symmetric, quasi

A*-bipartite Leonard pair. Then A, A* is thin.

Proof. We must show dim(V;) = d\'m(vj) = 1 (0<igd, 0<j<e) for the
maximal eigenspaces Vo, V,,...,Vd of A and Vo*, Vi¥,.., V¥ of A%
The argument for the Vy's is the same as the corresponding argument at

the end of the proof of Theorem 3.4 (ii), except that now EjA*v;*=0

(1<i<d-1) in the paragraph following (3.15). Now if v ¢ Vg (vZ0), then

v, A¥y, A*Zv,..., Axdy are independent by (1.3), making the degree e+1 of

the minimal polynomial of A* at least d+1. But then

dr1 s el <dim(Vg*) « .+ dim(V*) = dim(V) = d +1 forces dim(V;*) = 1

(O<i<e). This proves A, A* is thin. OO

To extend the above result we need the following notation. For any
Leonard pair A, A% inDefinition 1.1, denote by S = S(A,A®)

(resp. $* = S*(A,A*)) the set of eigenvalues 0; of A for which EiA*EfO
(0<i<d) (resp. the eigenvalues ;% of A* for which E;*AE;* = 0 (0<i<e)).

Recall the direct sum of real vector spaces V, W is the vector space

VW = [(vw)l veV,weW). Also, if CeEndg(V) and D ¢ Endg(W)
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then C@D ¢ Endp(V@W) is the map defined by C&D(v,w) = (Cv, Dw)

(veV,weW) Asequence r={rq,ry,.,ry is asubsequence of a
sequence s = {SO, TP sm} if 1= (O<i<n) for some integert

(0 £t <£m-n). We now have

THEOREM 42, Let @ = (9, ©1,-,8¢), 8% =(0g*, 81%,..,8,%) be any finite
sequences, each with distinct real entries. Let A, ,A1 ol EndB(V1 ),

Ag, Ao* € EndR(VQ), s Ay Ap® € EndR(Vn) be a finite collection of_ thin,

symmetric Leonard pairs, such that

(1) Spec(A;) is a subsequence of © {1<ign)

(2) Spec(A;*) is asubsequence of 8%  (1<isn)
(3) S(A]', Ai*) < (90, ed) (1<ign)

(4) for each integer i (0<i<d-1), there exists an integer j (1<j<n)

where (8;, 6;,) is a subsequence of Spec(Aj) and

(5) foreach integer h (Oshse-1), there exists an integer k (1<k<n)

where (6%, ©,,1*) is a subsequence of Spec(A.*).

Then A=A BAD.BA,, A% = A *BA*®.. DA * ¢ Endp(V eV e.eV,)

is a symmetric, quasi A*- bipartite Leonard pair with Spec(A) = 8,
Spec(A*) = ©*. Furthermore, any symmetric quasi A*- bipartite Leonard

pair is equivalent to a Leonard pair of this form.
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Proof. That our construction yields the required Leonard pair is

immediate, so consider our last assertion. Let A, A* ¢ Endp(V) be

-symmetric and quasi A*- bipartite. Then A and A¥ are each self-adjoint

with respect to some positive definite bilinear form <,> on V.Now ifa
subspace YC V 1S A-and A*- invariant, then so is

YJ'= {vi,y =0forallyeY), soby induction V= Vievoe eV,
(orthogonal direct sum), with each V; nonzero and minimatl with respect
to being A- and A* - invariant. Now each pair Alvz, A*‘Vi* (1gign) is an

irreducible, symmetric Leonard pair, and therefore thin by Theorem 4.1.
Now (1) -(3) above are immediate, with (4), (5) following from (1.3),
(1.4). O

We mention some open problems.
1. Find all irreducible representations ¢ of the Leonard algebra in

Theorem 3.4 (i1), with nothing assumed about g or the self- adjointness

of 0. The representation theory of Leonard algebras over fields other than

R may also be of interest.

2. Let A, A* ¢ EndR(V) be an irreducible Leonard pair of diameters

d, e Wwe con]ecture that there exist integers b, ¢ (0<b<d, 0<c<e) where
] =dim(VO) < dim(V,) €. dim(Vb_]) < dlm(Vb)

dim(\/b) Z dim(Vb,,]) z.2 dim(Vd)= 1

and
1 =dlm(V0*) <€ dlm(Vl*) €. % dlm(Vc_,*) < dlm(VC*)

dim(Ve*) > dim(Ve, %) 2.2 dim(V*) = 1.
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3. We may generalize the notion of a thin Leonard pair as follows. Let
A, A* ¢ Endp(V) be diagonalizable, with one dimensional maximal

eigenspaces Vo, Vises V4 and V¥, Vi¥,., Vg¥, respectively. Assume V
hés no proper nonzero A- and A*- invariant subspaces. Now define a
diagram D (resp. D*)onthenodes O, 1, ..,d by drawing a directed arc

from any node i to anynode j for which EiA*E} =0 (resp. E,*AEJ* z ().
Here Ej, E;* are the projections onto the eigenspaces. Then D, D* are

strongly connected by the irreducibility of V. If there exists a positive
definite bilinear form with respect to which A, A* are self-adjoint, the
diagrams are essentially undirected. What pairs D, D* can appear? What
are the families of D, D* for which there is an analog to Leonard's

theorem?
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