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PREFACE

The purpose of thig thesiz is to give 8 new tool in graph theory.

It enables us to analyze the greph structures more ayatematically, In

particular it provides a Powerful tool in the theory of distance-regular

grapha.  We call this method the intersection diagram. We first found

this method in regearch on distance degree regular Eraphs. Later it

turned cut to be very useful in the theory of distance-regular graphs,

The concept of distance-regularity of a Eraph waa intreoduced by

N. L. Bigges about twenty rears agn, A main subject of the theory of

distance-regular graphs is the complete classification of all distance-regular

graphs, Since there ape only finitely many known distance—regular

graphs with given valency k, it might be 3 naturat problem to classify

distapce-regulap graphe with a fixed valency k. However it wae rather

difficult problem even in the case &= 3,

Many, but not all, of the known distance-rea:ular graphs have

distance-transitive Froup actions, A distance-regylar graph which have

distanee-transitive group action ig called s distance-transitive graph.

Bigg® and Smith clasgified distance-transitive graphe with k= 3,4 ({[5),

[15], [18], [17)% Recently distance-trangitive graphs with £z 5,8, 7 have

been classified by Ivanov and Gardinar,

Related to the claseification rroblem, some special types aof

distance-regular Eraphs were atudied deeply. Bannai, Ito and Damerel]

complsted the classification of Mcore graphs {21, [71. Egawa and

Shrikhande settled the chargeterization problem of Hamming scheme Him, ah

Jhongon scheme Sl 7)) were studied by many authorg: Aigner, Bose,
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Laslkter, Moon, etc, Recently Terwilliger found » new method which
provides a systematic approach to the characterization problem by using
root systems.

In 1983, Ivanov proved an epoch-making thecrem which asserts that
there mre only & finite number of distance-regular graphs with given
velency & and girth g > 3. By using Ivanuv"ﬁ idea, Piggs, Boshier and
ShaweTaylor completed the classification of distance-regular graphs with
vaelencey k=3 Ivanov's proof is not so long but somewhat complicated.
The firzt application of intarsection diagrams fo distance-regular graphs
wae obtained when we were searching for a saimple proof of Ivanov's
theorem. We found a wvery simple preof of Ivanov's result by using
interzection diagrams. In the proof of the classzification for ¥ = 3, Bigge,
Boghier and ShaweTayior used & purely combinatorial and structure
thewretical method as well as Ivanov's meihod. The proot of their result
becomes more clear by using intersection diagrams. After completing the
case of wvalency three, our next problem is to clasgify distance-rcegular
graphs with wvalency k= 4. We have c¢ompleted the clmasification of
distance-regular graphe with valencey k= 4 and girth g= 3. Unfortunately,
it seems very difficult to clasaify distance-regular graphs with valency
k=4 by our method ocnly. Perhaps it ;w*ill require :‘:uoth algebreic methods
and combinatorial methods.

In Chapter l, we ah=all give hasic definitions and describe zome
elementary results concerning the intersection diagrams of general graphs,
In Chapter 2, the first application of the interesction disgram will be
given. We ghall prove some inegualities between distance degrees in

distance degree regular graphs. In Chapter 3, we &ghall discuss

intersection diagrams of distance-regular graphs, and give some elemantary




I'I
i
]

kT

-4 -

properties of diagrams and edge patterns. In Chapter 4, we shall give
some spplieations of intersection diagrams to distance-regular graphe. In
Section 4.1, we ahall give a short proof of Ivenov’s Theorem. . We have
obtained a general ineguality beiween intersection numbers which will be
rroved in Secticn 4.2. In section 4.3, we shall prove a result about
intergection arrays which i= very useful in re.aaarch on distance-regular
grapha. In Chapter 5, we shall deseribe the eclageification of
digtance-regular graphs with wvalancy four and girth three.

I thank E. Bannai, H. Envmote and T.Ite for their suggestions.
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CHAPTER CNE

Preliminariss

1.1. Graphs

In this section we deacribe some definiticns concerning grapha. A
graph (= {V, E) is a pair of a finite -set ¥V and a set F consaisting of
pairs lw, v ¥,V E Ve w1 An element of V is called a verter of G
and an element of B is called an edge of . We denote an edge {u, ¥l
{u, v €V) simply by ut Two vertices w, 1 are adjacent it uv is an
edge of G. & waik of length r froem a vertex u to & vertex v is a
geriea of (r+1} vertices Ty, Fy: v x, of V¥V with T c E for
Dgi<™ A walk of length 7 consisting of diatinct verticea is callad a
path of length 7 tor r-path), A walk from u to ¥ iz said to be cloged
if wzw A eycie of length r {or r-cycle) is a closed wallk of length +
{r = 3) coneisting of 7 distinet vertices, ¢ iz connecied if for every
pair {(u,v) of vertices there exists a path from 2 to . All graphs will
be assumed to be connectad. For two vertices u, ¥, we define thea
distance between u, v to be the length of a shortest path from u toc .
Then ¥V becomes a metric epace with the metric 3. The digmeler diG}
of G is the maximum distance between vertices of 3. The qirth giz) is
the mipimum length of cycles in &. For a vertex u in G and for an
integer 7, the gphere of radiug 7 with the center u is denoted by

Ff{u!I:{zE Vi z,uk=zrl




and the ball of radius 7 iz denoted by
Af{u}:{:re v B{:r.u,i;r}..

The size of [‘T{u] is called tha r-th disfance degree of . .The l-th
distance degree of u is called the degree of u and depnated by dG[:rJ- A
complete graph Ifﬂ is a graph with n vertices, whose edge sat F consists
af all pairs of vertices in &, A graph & is Boid to be Mpaeriile if G
contains no cyeles of ndd length. It & is a bipartite graph, there is
8 partition ¥z XU Y, YN ¥ =29, and there ia no edge inside X and Y.
If the edge =et E containsg all prirs xy(z e X, ¥e€ ¥), G is called =
compieie biparfile graph, which isg denoted by Km.n where #, 1 dencies

the number of vertices in ¥, ¥ reapectively.

1.2, Interasction Diagrams

Let & =(V; E) be a connected graph. For two wertices %, v and for
two integars T, 5, we define
D:{u,m = FT{u} M T v,
tha intersection of two spheres. If therse ig an edge ry with Z & D:Iu,*u]l.
y € DT, tuv), then we get
= dluyl § dlum) + Bzl =T L,
vz A{url & Aluy)+ Ayl =7+ 1L

Similarly we have 5' £ 541, 5 5 §'+1, So we get the following lemmea.

Lemma 1.1, If |7r=r'{ 22 or |s=s'| = 2, thers is mo edge between

r i
Dgiﬂuﬂ]’ and Dsl'[u:i',lt

|
?
y
.

[



Let Alu,wy=t, and take m vertex =z in'D:{u.'u]. Then we have
r= 8{ur) g diup) v S{uz) =1 + 5, '
s= vz 2 vl + dluT=t+ .

This impliea {r-s{ & § thuz we get
Lemms 1.2, If |r-s| > 2{uww), ﬂ:{u,v} iz empiy.

Far fixed vertices u, ¥ in &, we call the family {D:{u.*u]] rs tha interzecfion
r

diagram of & with respect to {u,u). Now fix sn edge uwv in &, and put

D::D:{u.v}. By lefams 1.2, D: ie empty for |r-g| & 2, B0 we have
7 . T T+l P
[DS _— lﬂﬁl}r J {Df}f L {DT. 11, {disjoint).

We draw the intersetion diagram aa follows.

0 1 2 -1 T 41
{u}= D b B —— e D D Do aaian
i T, r+l T2
\IK‘\Z‘;l\ \f—{‘\ r/i -r+1/ \
rrens D L D, i = o
Dy SUIVA el [ —
lz{‘ \‘2;’ \!3/ / T \ 1"+1/ \r+2/
b= Dy oy By i by o Dpg1—— oo

whers a line between two components of the family w;]'rs indicatea
[}

possibility of existence of edges connecting between them.
1.3. Edga Patterns
Lat & = (¥, E} be 8 connected graph and take two vertices uw,w of G

For a vertex & in D:{u,v}, we put the number of edges from = to a

1
component E:,{u,'u]l ag follows,

"

b
A
L
o
Lo
. i
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@ w vz (Tt N ol ),
We call the famiily {eﬁ{z: U, v”,u,u-f the edge pallerns of a vertex r in the
intersection diagram of ¢ with respect to {uw). We fix %, %, and put
n‘:{z} =eﬁ{:..-'; %, v) for every integer u, +. By Lemma 1.1, eﬁ{xl =0 if
| u-» | = L Thus we may only consider the followings.
e::tz}, eali.ﬂ, ef}{x}, eeliz}. eg{z:', eglt:c:r, e:i{:c}. ealirl. e:iiz}-

Thuz we get the following lemma.

Lemma 1.3. Fer ¥ < .ﬂ;{u,v} we have the foliowing eguadiiies where
4 and ¥ Tonges over [(-1,0,+1}L

. ' -
£ X ﬂvtml = dG{xh

MV
. +1 _
fii} E} ev{z} = IFll[:c:rr"l Fﬁl{u}l,
x el (z) = | T (&) T ul,
Y elay = 1T,z N Do tu) )
v ¥ - 1 T ’
fes & -
(144} E e, ix) = [T =m0 Fﬁl{vH.

£ eftx) = | T N T v,
E el (zy = JTylzrn L (0.




CHAFTER TWO

Distance Degree Regular Graphs

2.1. An Inequelity on Distance Dagremss

Let G =1(V, E} be a connected graph with the veriex set V and the

edge set E, & js =aid to be distance degres reguiar if the relation

i Fih‘” | = | F,L'['l-'}l
holds for any wvertices u, ¥ and nonnegative integer 1. In thia case,
the i-th distance degree of a distance degree regular graph & is the

number tl"i{u! |, which will be denoted by ki{G} or aimply by ki. We

Py it

remark that if ¢ is distance degres regular, then

!
PAtul | = 2k,
L1 J.:,ﬂj

T Ny

heolds. We shsall show

Theorem 2.1. Lel & be a connecled and disience degree regular graph
and d4(G) 2 2. Then, for every inleger T, 1 & v < diG), we hawve

3k (G & 2“:1{5! + 1}

Theorem 2.2. Lei ¢ be a connected and distance degree regjular graph
and di{¢) 2 2. If
3k (G) = 20k (G) + 1) {2}

holds for some integer v, 13571 < d(G), we have
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G dgomorphic o Cn[.ﬁ'm].

where o= 2d{GY + 1 or 2di&) and m = kT{G} ! 2.

In the above theorem, Cn[Km] denctes the composition of (.‘.'ﬂ by Km,
whers Cﬂ ig the m-eyecla and B’m is the complete graph of m wvertices.
The composition G:GIIGZJ of Gl = [VI,EI} by G2 = I[l.f"2Ir Ez:ll ie » graph with

the vertex set Vl x 1"2, and two vertices u = {ul.

defined to be adjacent if I‘ul'ul c Ell or [ul = vy and u,v, € EEJ'

To prove the above theorems, wa shall uge the following simple

11.2} and = {1.-1, 1;2} are

lemma.

Lemma 2.3. [Let a, b and ¢ be wverficzs of G such tha! digb) = n,
ibel=m and die,e) =0 +m, then we have
AgletUAa (o) C A tth
n particulor

| Apyn® 1 2 1A (@) ] + LA (e} = [A_ta) N A_(o} | (3)

The theorems are ocbvious for =1, s0 we assumes that F= (¥, B i=
connected and distance degree regular and 4{G} > 2 and 1 < r < diF) in

the rest of chaptesr Z.

B2 Proof of Theorsam 2.1

For every edge uv € F and positive integere 1 and 7, the following

hold:

If |[i-71 &g 2 then l."il:'uj I"'Il"j[‘lJIZQ'. (4}

EU

m—
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(T @ O T | + | T (e T, + T, twd N T fw) ) = k.
Since
it follews from {5} by i{nduction on 1 that

IT (DT = 1D tud AT (v ]

+1
By (1) and (1), we also get, If A{wvi=r, that

How we choose two vertices u and ¥ such that Afu,z)=r+1,
{@, ¥ W, ... ,2) be one of the sheortest patha from u to . By (7},

; F?_l{w M l"llIzJ | &1 +L‘1 —k_r.
Since
we have
I T (u) Feiiwl g1 thy -k
We alzo have
' Try @D T+ I T N0 | 214k -k

Te prove the ahove inequality (10}, we consider three CABEE,

Case {i]). Thers exists a vertex z ¢ l"liz} M 1"T+2{uj M Pﬂltv}.
Since #{ws) =7, (7}, and
L ytrn Iz c Lo @I AT v,
WE ha've

TN @ 21 vk -k

Cage (i1). There erists a vertex z ¢ 1"1{21 M ['_H_liu} M I‘ﬁliv].

{5)

(6)

{7)

Let

(8)

{9

(10}
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Since Alw,z} =7, wWe hava

3 T, ) N Ty 234k =k

by 1T} We alsc get

_ T, ) NTy(@ C AT (a0 I, U (P tw) N D))

for this caae. Hence (10) holds again.

Ccase {ii). There existE no vertex in

[ (2D AT ) U Tpyg (w0 (1 Ty O

e pe T Le— EER

In this cage wa have

|
1 r+2 r+l
:’ nlizi =t U I‘i!]u}] ni v Fjlvi] ﬂhltzl

=T j=r-1
€ {I‘ﬂl{u:- M r,.wn U I‘,I.Iu}-

Hence
1+& = I‘ﬁliu} N I‘T[*u}l + kr'

Thecorem 2.1 follows from {5, (9} and {i0).

29, Proo! of Theorem 2.2

Lef u and z be any iwo vartices such that Sfu,zi=v+1 and

{4, v, Wy -, X} bE OO of the shortest paths from u to x. Condition (2}

1+#1-kr= kf,.fz,

and forces equality in (8) and (§), 80 we kave

nT_llw] NAE= rlun L.V (11}

{12}

|
;i
%
L
} impliea that
i

i I‘riﬂl n 1"1,,_1{1!} | = k,r ;2
If we write Eg. (T} in the form

Condition (2} also forcea sgquality in (7}
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of 13} {from which it was derived) for the tripla v, w and 7, we get
Ap (vt U A fzh = Ajtwl. {13)
Yow we define a relation KR on V. For any I, ¥ € V, we define TR Y
if and only if
At = ALY
This is en eguivalence relation. We show that each eguivalince claas

spane a complete graph X, rle and that the guotient G/R i3 isomorphic

to 8 cycle Gn with % = 2d{G} or n = 24{C) + L.
Suppose u € V, v € A, lu), vEu {where E denotea the complament

of R} and

T e 1"1,{11] M Fﬁliuh.
If yEx, then

¥ E I‘T{‘u} M F_N_l{u}.
Convergely, if

¥ E Ff!'u:- M I'ﬂl{uh
then (1i} and {13} imply that Yy R Thus I"T{‘U]ﬂl"ﬂli'uj iz 1 single
equivalence class. Moreover any eguivalence class ig of this form for
some uw and v (given r & V we can choogse a vertex u &£ I‘H_I{z} and a
path (u,%, ..,z of length 7+1 from u te z; then wRv and the

equivalence class containing ¥ is precisely T _[v) AT tul

1

Now wa show that

(T AT, )=k /2

r+l
This is eguivalent to the following by (5} and {12},

l."r{'ul i I‘fﬂ{u}l = .
Lt (uw, v, W, ., 2,2 be one of the shortest rath from u to 2. For any

e E F-r-ll:m N [‘T{v} { # & by {6) ],

we have

T T R TP

...||\¥ '-

b T4 .

e

ey e e

e
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diwal = v+ 1 {14}

by (13} and Jd{wa) 2 r+ 1. Hence thers exiate a path of length r+ 1 of

the form
£ T/ T TR |

from w te @. By {13} we have

ﬁf_li'"]' L hllal = Arfuh
This impiies

FlwN e © Aylak
Interchenging the rola of u and v, we have Jd(h2)=1 for any
b e I‘T['u} "} I‘T{'u}. Thus we get

Alw,a) £ Sla,bl + bz} + Jizw) 5 1.
This contradicts (14). Hence we have
rful FT{‘-UII =M,

m =ach equivelence clase haz size £ ,rf 2 ss clgimed. Finally, =sinca

xlzzwf,rzn-u.-ffz-l}

the guotient graph has degree 2.
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CHAPTER THREE

Intersection Diagrams of Diatance=-Hegular Graphs

3.1 Preliminaries for Distance—Ragular Graphs

Let T =1V, E! be a connected graph. G iz said to be distance-reguior
it the size of D;{u,’u} depends only on the distance between 4 Bmnd v
rather than the individual vertices. More preciealy, G is diastance-regular
it the following equality holds for every integer 7, 5 and for every
vertices u, v, uw, v' with d{w,v} = df{u'wh

103wl | = | Dt )

In this chapter, we assume (7 {3 a distance-regular graph with the
diameter A = d{G). Since a distance-regular graph iz also a distance

degree regular, the 7-th degres

k, = | T, (2} ]
iz independent on the choize of . The l-~th degree k =J|:l of ¢ is called
the walency of & For two vertices 4w, v with d{u,vi=?, we put
t _ T
P ™ IDs{'u,'u! |-

The parameter ;p:s iz called the interseciion number of 4. Eapecially we
put
. .T _ L7 _
=Pyt br'plﬂ-l’ TPl
These parameters a = b_r. ¢, are glso called the intersection numbers aof G

Clearly

Lt topipr A gAY Ty
“ puafrvmpprefimisie

b

raa b

" A
Ty L= il S

apm— o

frciopintaaigi
Eiittimimlsfsimfnpini-paryiei= oy
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+h_+e = k
er t'1" T

The {infersection array of G i8 an array of the parameters @ br’ C,
arranged as follows.

g1 cz cd-l l.'.‘d

Q al “2 heais u’d-l -:td
2

k bl b (LI LL] bd_—-l D

It iz wel]l known that if the intersection array of & ig given then ail
intersaction numbers pi s are determined uniguely. Sc the intersection

numbers 2., & , ¢_ are very important in the theory of distance-regular

LAl

graphs. These parameters satisfy the following well-known condition.
ﬂ:cﬂ,Sclsczﬁ R - S
kzbﬂkblzbzz ...... Zbd=0.

The 7-th degres i:f ig given by the following formuls.

.- ...
01 -1
k_ = | 1"1_{1.&} | =

We also have the following formula for an edge uv in G

. k_a
| DT tw) | = ——
kb k_  ,C
r+1 _ T _rT TrelTrel
IDT (| = IDT+1{1"1”} | = x x *

The girth g = §(G) is the length of a shortest cycle In G
More precise descriptions about distance-regular graphs will be found

in {1].

i
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32. Interss=ction Diagrams of Distance—Regular Graphs

In this section we fix two vertices ; v in @ and put

r

Dy

= .D::'u,v), eﬁ = éﬁ{m; @, v}

By lemma 1.3, we get the following lemma.

Lemma 3.1. fel u, v be two verfices in G and lel 7 be o verter in
g« Then we hove the Sfollowing ralations.

-1 O +
¢, = ¥ e, (z) . e, = L ey{xj s b, = X Evli:cl '
¥ ¥ w
WAsTE ¥ Tanges over {-1,0,+1]. Ke get also

5 +

- A - £ i At
€. = E el,ix) , a_ = F e (= , bs rt Yo AEI
T i &

In the rest of this section, we assume J{u,u) = ],

Lemma 3.2.  Let 2 € 5.°).  Then the following equaiitics hold,

¥

i ¢ - _#] ! _
() e iz} = e_jlx) = g &) =0

+1 _ +1 0 -1 -
it} e+1{:j = b‘.l'+1 , e+1{=;r + eﬂ(:cll + eﬂ{z] = br '
.. - - -1 -1

(114} e_i{z} =6, e&i:} t ¢, iz} + e_li:ﬂ % Oy

L]

! 0 . ( -1 _
(1) en{.'c} + e+1fx} T8 aﬂl:xj t e, (=) = 2, .

Lemma 3.3,

, - . r+1 T+1 T
i) If br'bﬁl them there is no edge between ﬂ-r and Dﬂ-l U‘D-r-rl'

. _ , T+1 T T
fiiy If c_r_-.eﬂl then there is no edge betueen Df avid ﬂr-rl UDT.

Lemma 3.4. Let z€ 8], Then the following equalities hald.
. +1 _ -1 -
{I'JII E-I{xj - 'E+1{=} - n ]

R e e oo

e T D
L [ g
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[44) a:}{z} + e;j‘l:ﬂ = B:%{-":} * 921'.'3} = b
_ -1 o PR | 0 -
(i) e jiz) + e (2} = e j(z} + e (@) =L,

(i) aEliz}I + eg[z) + 321{:} = aEI{xI + eg{:j + eal{:] e .

Lemma 3.5. Lel v, 5 be positive inlegers. If

S br ’

bot1 = Orez +s

cﬂl-cﬂz-“""-cﬂs

hoid, then the intersection dicgram of G iakes lhe Joliouning Jform.

4y ——
/ \Dﬂl D1-+2 Bﬁs// \

—_— - _‘_ r+l el vorrnte —— B e
T ) L/

T+
D'!"I'

(LR TL R}

L1
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CHAPTER FOUR

Some Applications of Intersection Diagrame

4.1. A Proof of Ivanov's Theorem

In [12], Ivancv proved a spoch-meking reasult on distsnce-regular

graphs. The main result is stated as followas.

Theoram 4.1 {Ivancv [12]). Lel G be o dislance-reguict groaph with

the inferseciion array

91 ¢ &

2 [IR1L Y] cd—-l d

0 @y 8y e 8y, 8y

kb by wee By 0

Suppose

c, vl € 2 Cris

Gy * Pl - ®rig - Crrs

br bﬂ-l br+2 bﬂs
Then we have 5 § 1 iFf © = 0, .
f
Corollary 4.2 (Iwvanov [1Z]}. Let G be o distence-reguiar groph. i
e
Suppose the intersection arroy solisfies I?
.t

e -

- -8
FTTRAT T T

s e
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1 IE"2 cf cf'bl
a1 = aa = sempar = u.f * a-r+1 '
5 % b, byt

Then the digmeter d = di{7} 15 bounded by some funclion deperding on r
and tha wvalency k. In particular, {f the girth g is gresier than 3,

then the diamefer o 15 bounded by g cerigin funclion depending on k ana

g.

Ivanov'a criginal proof ia fairly difficult te read though it is short.
We noticed that Theorem 4.1 ig easily proved by umsing the intarsection

diagram. Here, we prove Theorem 4.1 by useing the intersection dingram.

Proof of Theerem 5.1. Fix an edge uv in ¢, and we consider the
intersection diagram of & with respect to {u,uv). Put
A
L‘-‘s =D " (TR TR

By way of contradiction, we assume 52 7+ 2 Then the intersection

diagrom takes the following form by Lemma 3.5.

r

g r=1 r a+1 r45
'DT D-r+ 1 Dﬂ e ﬂ-r+s+1
/ \ /S ‘ N\
| p’ D D
T+ 1 LEXIT Y] f+_$'

1/ 1\ \ l/ T\"DL/ D'r+2 \ 1-+s+1/

r+l Dr+s - -

1
/
N

T+l T+

Dy e — D7 |

. r+1
Teke &2 wvertex 2 in Dr . Since {cr" a s b,r:l = [c‘r+l’ a .y br+l}’ thare

must be e vertex ¥ in O UD] upzi which is adjacent to z, by

Lemma J.2,

r+1 2r+l

First we suppose y €D . Chose 2 € ﬂ2r+1 such that diyz) =+ ;

Mhe L



T T

R T

n ey e
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this is possible because there ars &1_” edgea from ¥ to D:—:i and so on.
Since 5 2 r+2, the shape of the intersection diagram implies that the b‘r’+1
vertices in D;:f adjacent to z have distance T+2 from = Since
2iz,z) s r+1, there cannot be BOF more vértices which are adjacent to z
have distance 7+ 2 apart from 2, which ia 2 contradiction since thare ig
at least one edge from T to D::_l.
Next we suppose y DLI. Chooge 3z EﬂgL_l guch that &fy,zi=r.

Then we get a contradiction by sam® argument ag abgve. So thers ig

r+1

no edge from r to ﬂr-i-l

,
uDﬂ-l'

Last we suppose y e D:. Choose z eithar in Dg:-l or in Dg: such
that (y,z) =». This implies a contradiction as above,

2.2,  An Inequality Batween Intersection Numbersg

In this section we prove the following inequalities Letween intersecticn

numbers of a distance-reguiar Eraph.

Theorem 4.3. Let G b g dislonce-reguler graph with diameter o
and infersecHon numbers o, bf, e Then for every inleger + with
D<r<d, the Jollowring inegualifies hoid.

W e aall-(a /b)), :
Carollary 4.4, fFor every inleger 1 with 0 < r « g, the following held,
H)Ifﬂ{ar{brmma > Q.

T+l

(ii) If E{nﬂl-::a then uf:vﬂ.

r+l
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Corcllary 4.4 ig a direct conseguenca of Theorem 4.3. In the following

procf, el(X, ¥} denctee the number of edgea between two pubeets Y and

¥ of the vertex set V.

Proof of Theorem 4.3, We fix an edge uv in & and we consider the

intergaction diagram of & with respect to (u, v). Put
r'

Dg

-
ﬂs(u,u}.

Now we count the number of edges Letwsen D: and D:ﬂ. For z € D:,

1

the number of edges connecting x and D:+ is at most a > 0On the other

hand, for yED:H, we have

r
ely, 0 U2

r+l r+l
8y, J"""zf'-l-l U ﬂr } a1

i
4]

T+1, _
r:'

1]
-

S50 we get

¢ S T+l
e(y, D) =6 -4 .+ n{y,ﬂﬂl} = Cp= -
Thue
r r _r+l 1
a |12 | &2 elD 0.} & la,-a 1D "l.
Hare we use’
Y T+l
|B1-| = i:faffk and. 11'.‘1_ | = .l:_:fbffk.

Then we get

2

e, & {ar —aﬂl.'l 'b‘rr
and this implies (i} of Theorem 4.1,

Similarly, (i) of Theorem 4.3 may be proved by counting the number

r+l r+1
of edgee between Dr+1 and Dr .

s S,
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4+3. A Thecorem on Intersection Arrays

Let &=(V,E} be a distance-regular graph with vertex set V¥ and
edge set K, Let @, br' ¢, be the intersection numbers of G. By way
of recourse to the lnequalities € 4 Ciel and b{ -] h'i 47 We may write the

intersection arrey of & in the following form.

* 1 wrduhd 1 1 Iedars 1 [ TEEN]
0 0 e O | R
k k-1 e k=1 k=2 s E-2 i

Remark that the number of columns of type (1,0,k-1) {& st least cne
if the girth of & is greater than three. We cobtained the following

theorem.

Theorem 4.5. Lef G e a dislance—regulor graph with the girih
greater than fhree, Then ithe mumber of columns of fype (1,1, £-2)] in

the iniersection array of G is al most four,

Recently, Biggs, Boshier and Shawe-Taylor complated the classification
of distance-regular graphs of valency three ([4]). The key of their
proof iz to show that the pumber of coluwmnz of type {1,1,1} is at most
three in any distance-ragular graph with valency three snd girth greater

than three. Theorem 4.5 is a partial extension of this fact.

Let &G = (V.E) be a distance-ragular graph with valency £ 2 3.  Number

of columns of type (1,0.k-1), {1,1.k~2} In the intersection array will be
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denoted by 7 and 5§ respectively. Wa asgume & has girth greater than

thre=s, Bo wa have + > Q.

We fix an edge uv in G and we consider the intersection dlagram of

G with respect to {u,v). We put

o=

>
s Ds{ﬂpﬂ:'l

My My
ﬂv{z}-avtz.u,u];

Then the intersection disgram of G takez the form

g 1

r r+l r+8
Dl —n DE — e _'Dr+1

Dr+2 —— e — DI‘+B+

\r+1 r+a/ \\

Dr+1 FAFANES —.Dr+ﬂ

g nnens

*hadwa

1 P r+l r+2 \r+a+1
DD..___Dl o aerae— Dr

[TRI L]

Dr+1_

by lemmas in chapter 3.

By way of contradiction, we aszume s > 4, Mote that 7+l & 5§ by
Theorem 4.1.

First we determine the edge patterns e‘::{:r:l for various =z For a
vertex r and a subeet ¥ in ¥, let aiz, ¥) denote the number of edges

which connect £ and wvertices in ¥.

Proposition 4.6.

) If zEL‘r:ﬂ for 0<i<r, tlhen

i _ i+, _
E{:l .D. } - 1 Eﬂd E[#‘. ﬂ£+1:| - k"‘lu

i=]
Wiy 1y z€ 0! then
T - T+1, TS, _
elx, Dr-ll = ez, Dﬁlj 21 and eirx Dﬂ_l} = k-2,

({41} If ::EIJ:H for T (i< T4s then

elr, D:_I] = elx, Dl.'ﬂj =1 and ez, D#z

W ErS




| r+]
{ig) if T eﬂﬂ-l

r+l, _ T o
a{z, Dr } = elz, IJTH} =1 and e(z, p

then

T2, _
1"+2] - k'Zt

{v) If::EDl.’ for v+l <i ¢ »45 then

e(z, 0}

_ i, _ ' i+l, _
} = eiz, Bi} =1 and eiz, Dﬂl} = k-2,

Proof.  We shall only prove {iv); the other cages follow along similar

. T+1
lines. Let z £ Drﬂ'

™1
e, Dr+2]' +elx, I

By Lemma 3.4,

™2, _ _
r+21 - b-r+1 = k-2.

Since there is no edge between Dﬁl and D_:é, wa heva

r+1
T+l _
E{zl Dﬁzl - 0-
Thereafcre
+2
elz, DLZJ = k=L,

Agminn by Lemma 3.4,
T ro_
elr, Dﬂ_l} +eiz, D'r} =e = 1.
But now D: iz empty. Thus,

elz, D

T -
1"*1" < 1.
Similarly we get also

r+1

elx, .Dr i=1,

For a cycle

c o zﬂ ’ 11 PEEFTTTIN "‘m-l
in & we consider the profile of © which has heen defined in 3. We
give m slightly different definition, Let {B}} be the interssction diagram
of & with respect to the edge {:ca, ::1]. Then each 1'1 (D t<m) is

contained in same D} . Put bit) =Bj. . Then we get a seriss

oy, D1}, e, Dim-1)




- 95 -

which will be callad the profile of the cycle £ with reapect to [::'u. xlj.

For example, take an edge {z ,:1} of & and consider the interssction

. i . . r+2

diagram {Dj} with respect to {zﬂ. :1}. Take an edge {zﬂ_z, r 3] in Dr-rl'
. 1 . +

take %,y in I}z, 30 N D" and take =, in T, Z,,) NBTI Connect

xI and Z o by a (r+l)-path
Ty By b s T,
and connect Frs and z, br a {(r+l)-path
Tpyg # rever o Topes g -

Then we get a {Zr+6)-cycle

Ty 1 E] 4 ey Tors5
and the pofile of ¢ with respect to fxu, :1_& is

{} 1 T+1 f+2 42 7'+1 1‘+l 1
l'ﬂﬂ""’ﬂ s T+1‘D1‘+1’ﬂ r+1'D-r+1'"”52‘

Now we determine the profiles of £ in the above example with respect
to (2 ,zl}. {2, :2}. I[zz, :3}. TP By the form of the intersection

diagram and by the proposition, the profile of £ with respect to {zl,.tzj

is
o 1 T+l ™+1 r+1 T+] T 1
ﬂl ,ﬂogul ;BT Df-i-l ’ET+1’BT+2'DT+2’DT+1"" r-Dz
whera [J‘J;'.} denotes the jntersection dibgram with respect to [zl, :rzj. The

rrefile of £ with respect to {.':2. 13} is

(i} 1 f+1 r+2 7+l r+1 1 :
Dl’ﬂﬂ""’ﬂ T+1'D1‘+2’B1'+2' r+1'Dr+1"“'ﬂz‘ f

and tha prnfiie with respect g {:t:a. 14} is

1 74l 142 142 il pal 1
EU’D "Dr+1' f+1"D-r 'Dr+1'DT+1"“"G2

But the profile with respect to {::3, :c4]| ie same as the profile with

o

reapect to t::u. zlj. This means the length of the cycle muat be & multiple
of 3. Hence we have 28 = 0 (mod 3y, =0 {mod 3).

To get ancother condition on 7, we take a {2r+13)-eycle
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, . .
o g yﬂ - SRR y2r+12

whose profile with respact to {yﬂ, yl} is

a _1 r+l e o r+3 v+3 T4+ r+]
I'Eﬂ""’ﬂr * ﬂl’pﬂz’ﬂﬂf’ﬂﬂl’ﬂr r
r+1 T+E T4 2 D‘r+2 T+1

r+l? ET-I-Z ' D‘?‘+3 ’ ﬂﬂa P e ? D1'+1 r

b

r 1
.DT+1 ’IIG'DZF
We calculate the profile of €' with respect to {yl, yz:r, [yz, ya}, iet

The profiles with respect to ryl, _322) apf (yz, ySJ are determined upiguely.

et fdfer parliw ndld respecs S .rys, qu AEY WD poaantities, 4o wWe mMUEL
colculate the profiles with respect to Iya. 1-'4]'. {34, 35}, wee I eAch case
separatsly, Fortunately, the profiles with respect to {y,r, ygl coineide
in each rase, Thua, the profilta with respect to {y?. ya} and {yﬂ. ygl
are unigquely determined. Again the profiles with respect iyg, ymj. g
1y12, yw} have two possibilities. But the profiles with respect to
(yla, yH] are coipcident, and the profiles with respsct to {3_;13, yMj,
in.ylE} and {yla. 3"'15} are uniquely determined. The profile with
respect to {yla, 3”15] coincides with the profile with respect te {yﬂ, yl}.

Therefore 2r+13 =0 (mod 15}, =1 {mod 3). This i3 a contradiction.

Remark. Two cycles in the above proof are the same ms those used
in {4]. But the profiles of the (2r+l3)-cycle is not uniquely determined

in our case, l.e, that does not have a good profile in terms of [4].
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CHAFTER FIVE

Distance-Regular Graphs with Valency Four and Girth Thres

8.1. The Clageificetion Theorem

In this chapter we shall classify distance-regular grapha with valency

four and girth three,

Theorem 5.1. Let G be o dislance-regulor graph with valemcy four

and girth three. Then G is isomorphic {o one of the foliowing graphs.

(1} complete graph Hﬁ

(it} Qclahedron

i) The line praph of one of lhe following graphs with valency 4
fa) Pelersen's graph 03 {b) compliete bipartite graph KB,E

¢} Heowood graph {d} 8-cage {e) 12-coge

Recently, N.L. Bizgs, A. Boshier and J. Shawe-Taylor completed the
classgification of distance-regular graphs with valeney 3 ([4]). Discussions
about significance of classifying distance-regular graphs will be found in
the book by Pannai and Ito ({11 In the proof of the above theorem
we shall only use pure combinatorial method, though there is an exception
that we shall use the results by Bannai and Ito {[2]}, Damerell ([7]},

Feit and Higman ([8]), whose proofs require algebraic methods.
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5.2. Locally Triengular Graphsg

Let ¢ be a connected simple graph &, not neccessarily distance-regular,
with the vertex set V. & is said to be locally trianguiar if for any
esdge (7,%) in & there exists just one vertex 2 which is adjacent to both
Z and Y. The !riangie graph G of a locally triangular graph < is a
graph with the vertex zet

vz (g, u,, ugl | Ui, €V, Uy Uy U, Are mdjacent to each other },
and two vertices u = “‘1’“2‘“3}’ v= [1:1,1:2,'1:3} are defined to be adjacent
inGif ¥ ¥ Vand uNv 2 J held.

There is an usual metric ¥ on G which is defined as the length of
B shortest path between two vertices of G. There is another metric A
on G defined by

du, v)=min{ du,v) [uemve ).

A relation between 2 and § is given by the following lomma,

Lemma 5.2, Let G be a locally rienguior graph end fei %, ¥ be fiwg
distinet wvertices in &. Then

d{un) = du,v) + L

Proof.  First we assume d(u,V)=r, %,V € &  Then there s a
path in & connecting % and 7 E:Eu, EI’ Ez. raves ET:E. Take
* = zi .‘"‘lzi

i 0% 135 r-1). Then ::t. and =i+1 are adjacent in G, since

+1

¥, and z, . are both in E'H-l' This implies &(z,, T, &7l AE W

S 7-1.  Hence we get 3(u, ) 2 (U, ) +1. Next we assume A, v)

=7. Take u € u and ¥ € ¥ with 3(u, %) = . Lat U2 By Ty %y

sy X, 0T W be & path of length + connecting w and . Take a




EETI .
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vertax z; which i5 adjacent to both T; and 'Ti-l-l (0242 r-1), and put

¥, = {zi":ii-l’zi 1. Then we get a saries of wvertices in & : zn, zl,

Zor amens z

o1t Since z£+1 belongs to both z, and zi+1’ we have z, N

%ie1 * Y. This implies 'E'{EO, Er-l‘.' S r-1. Hance we have alu, v 3

T+l, since u is adjacent to Eu and ¥ is adjacent to E-r-l in & So we

get J{u, ¥} § A%, u o+ 1,

Lemma 5.3, Let G be o iocally triengular graph, It ¢ is regular

of degree four, then L{G) 15 isomerphic to G,

Proat. First we remark that for any wvarteX r in & there is Just
two vertices of § whieh include x, since degree of z ia four and & is
jocally trianeular.

Let (%, ¥} be an edge in G, then |wn%i = 1, since G is locally
triangular. Let f be a mapping of L{G} te ¢ which is defined as

fiuv, 2y = ¢, *EUNT
Take any vertex # in G.  There are two vertices u, ¥ in & with z e &
and £ €Y. Then we have Fiu, v} = 2. So § is onto.  Since f is
clearly cne-to-cne by the above remark, f is g bijection.

To gee that § is anp isnmnrphism between LiG) and &, take two
adjecent vertices (I, ¥), (Z', '} in L{G}. By definition of a line graph,
We may assume u=-ul.  Let f (i, 5 z 2 and f{u, %) = 2.  Since
TrI' €, % i3 adjacent to z' in G.  So f maps adjacent vertices ip L(G)
to adjacent vertices in 6. 1t is easy to show that if J {4, ¥ is adjacent

te £ (%', ) then (%, T} is adjacent to {u’, V). Hence f iz an isomorphism,

P DRI,




5.3. Intersection Arrays of Locally Triangular Graphs

Let ¢ be 7 locally trianguiar distance-regulay graph with valency
four. Let & be the diameter of ¢ snd @, bT, e 0 £ r & d) be the
intersection numbers of ¢. Remerk that a, = l Binee G is locally triangular.

We may assume that the [ntersection array of G takes the following

torm, by bT & br+1' c = c1-+1 and a_r + br * €. = 4.

E}l-..11...12...22“.23‘..3{:&
ﬂ 1 LRl I 2 inw 2 ﬂ Ay 0' 1' L] 1 'D g ﬂ' ﬂ-d -
12..21.12..2 Lo l1 .01 0

Since ul = cl

The colums of type ¢ 1:2,1} and the columns of trpe {2,0,2) do not appear

=1, the number of colums of type (1,1,2) is at least one.

af the same time,

Lemma 5.4, There is mo codumn of type (2,0,2) in the inlersection

array of .

Proof. Let @ be the number of columns of type {L1,2}, Assums
there ia a column of type (2,0,2), Let % be a vertex in G and take a

vertex r in I il There iz an edge (%, ¥) with v € r‘a{u}. Since

a+l
G ia locaily triangular, there iz a vertex z which i adjacent to T and
Y. Then we get z e I‘af'u;l by 4a‘+1 =0, Moreover we take ap edge

(Y with w e I‘a_ (@}, Since G ig locaily trianguiar, there ig a vertax

I
U which ig adjacent to 1w and . Then we got w g I"al[u: by ca = 1.
Then wea have twp edges (¥2} and (¥,v}, Put since D’a =1, we got -,

Then there iz two verticea 4w, r which ape adjacent tn ¥ and 2z, g
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contradiction,
Lemma 5.5. There is no column of lype (3,0,1),

Progf. This follows from the fact that 2 doee not divide the Bize

of ]_"T{u}.
LEMMA 5.8, There is af most one colUmn of tyre £1,2,13,

Froof. Assume there is at least two columne of trpe (1,2,1). Let
« be the number of columns of type (1,1,2). Let u be s vertex in G
and r be a vertex in [‘aﬂtuj. Take an edge (r,y} with Yy e Pa-l-z“‘}'
Since @ is locally trianguiar, there iz a vertax =z which ia sdjmacent to z
and 1, Since ba+1
Thia contradicts to ca 43 ° 1.

=1, r iz not in r‘a+2{ul, B0 we have z & Paci-lh”'

Lemma 5.7. If there iz wo column of fype (1,2,1) then there ix mao

column of fype {2,1,1).

EProof. Assume there i3 neo column of trpe (1,2,1}, but there ig a
column of type (2,1,1). Lat @ be the number of columng of type {1,1,2)

and let u be s vertex in . By 'Lamma 34, we have .-.:qu‘.1 =2, a =1

and b::r+

' 1. Take a vertex z in I‘a_'_l{u]. Let [‘lfz:l = [yl,yE. z, w}
with yl.yz Ef‘qiuh T E Fa+1fﬁé}, w e Fa+2{u}' Sinee & is locally
triangular, 2 im adjacent o 1w, yl iz adjacent to yz. Take an edge
{yl,p} with p FG_Itu}. Since ¢ im locally triangular, there iz 8 vertex

¢ which iz adiacent to P and yl. We have qEI‘atu} by Ea = But
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mince aa =1, we geg q:yz. Then there is two vertices 1 T which is

adjacent ta yl, Yo This iz 2 contradiction.

Let (uw) b¢ an edge in ¢ and pul e::{zj =ar*’:{:; u, v,

Lemma 5.8.
Then wae have the

Lat o be the number of columns of fype (1,1,25

Jollowings.

(i) For z Di, we have
= 2

o S +1
e_lfz} = & £y = 1 and e+1{:|.-] =
i) For = € D™ or DT 1grg a-1) we hove
- _ 0 - +1 -
tl{‘ﬂ = eu{.-:} =1 and eﬂt:r:r = Z.
(i) For z & 13: (2S7Sa) we hawve

ejf:; = eg{;r]l =1 and eiim = 2
Assume there is o column of type (1,2,1}., Then

(iv) Far » € B::” we Aate
e:i{x} = eg[zj = '31“” = e:i[.‘rl =1,
Assume the columng of type {1,2,1) and (2,1,1) both exrisf, Then

a+2
(v} For r £ Baﬂ
-1 _ =1 _ .0 _ 41 -
e.qiF = &,y (x) = eplz} = eﬂn‘z] = 1.

(vi) For z ¢ D;:i. one of the followings holids.

(a) 251{:} = ei[:} = 32-1{:] = aglle =1
® ¢jta) = lim) = 1 ang S = 2.

are the consequences of the lommas describsd in

Proof. Theaze
we need the fact

Bection 2.  In the proof of {iv)] (when = 2} sad (1),

that & ia locally triangular,
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Lemma 5.9,  There is no column of type (2,1,1}.

Proof.  Assume there iz at least cne column of trpe (2,1,1}. Then
there is ai least one colump of type (1,2,1} by Lemms 5,7, Let o be the
number of columns of type (1,1,2).

We claim any {a+l}-path Zgs 24, Zot rasren %41 With ﬂfzg, za"_l] T3

r_ LT M [ N
can be extendag to a {2a+3)-cyele. Put ‘Ds -.L‘rsizn. 21}, evf:] = 91__ {=: Z5) zlj.

r = : o _

Then Z, € Dr-l for (15rx a+l). By Lemms 5.8 we have e+1{3a+1‘1 =
. @+l . .

1, hence thare ig a vertex za*z in 'Dcr+1 which {s adjagent to zaﬂ'

o

o+l which

Since eal‘-za+2;.:1 by Lemma 5.8, there is g vertex 24y in D

18 adjecent tp % 42+ Since ﬂ'i’:aﬁ, zﬂj = &, We can take gz path za+3.

= &1 .
za’”' v zzi:ﬁ3 = 2y,  Clearly Z+3si € ﬂa-HI for 0 i % a. 3o we

et a {2g+3)-eyole Z5 zl, verrang 2 247 38 required,

2a+3
: r ¥ & &
Now we fix an edge (u,v) end we wut DE ”’s“"‘”’ Ev (£} = ev{z; ),

Put 23 =V and tske a vertex zl in El. Since a:i[zlj 28 by Lemma 5.8,

1
there ie g vartex 2z, in B§ which ig ad jacet to zl. For 25+ I, we
have a:;:‘zrj =1, s we can take 8 vertex 2,”1 in D::i which is adimcent
to Z We can extend the {@+1}-path zﬁ, zl, arvere za+1 o a (Zo+3)-cycle
. . -1 R S | -
zﬂ. Z1) vonn 22a+3 83 we claimed abova. Since e_lq‘zqﬂ} = eﬂ{zqﬂj =1
#] - a+l a+2 ;
and eﬂ[zaﬂj =2, 2a+2 must be in Da:-l-l or .Da+2. But szince

a+l

. -1 - 4] -
atza+2, zﬂj & a+l, we hava za+2 =y ﬂa-rl' Since e_1{2q+2j = e+1{za+2} =1,

0 .. o

eﬂ{za+2,1 =2 and a{za+3, zu:r ag, we get that 2a+3 iz in Dz. Similary
T -1 . .

we have zaﬁﬂ. 3 ‘Da~i for (05 2 a~-ih Especially we get 2241-2 3

D%. Thia ig a cantradiction since fﬂii =e, =L

Lemma 5,10, If there is o eoiumn of type {1,2,1}, then c = 4,
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Froaf, Let & be the number of columns of type (1,1,23, Remark
that o = g42 b¥ the above lemmasg, Take an edge (u,v) and piat

LA i T : & +1 - e ]
ﬂs -Esfu,v}, e?{xJ = ey::, U, ¥ Since ‘Da # ¥ and eﬂ{yj zZ2forye Dar‘

there iz an edge (¥,z) with zED::i. I aéhn:j:ﬂ, then wa get a

condradiction as in the proof of Lemma 5.9, 5o we have ealiz} = efiiz}
= 1, eg{::} = 1. Since & is localiy triangular, there is a vertex z which

is adjacent tn g and . We have zEDg:Il by e:}{z:r:l angd

e?ll[z: = ealfx,! =0,  Take ann edge (2,p) with P Dg_té; and take a vertax

§ which ig adjacent tg g and p. Then g EBEI?- There ir ap edge

(7S} with Fe ﬂg+1 since e:i:‘p}l =¢ =1, Take 8 vertex & which js

o+l

adjacent to # and f, Then A is not in B;!Ié Since e::{sz 1. S0 we
e s x+l
have & & Da+l or A€ DHH, I BNF¥ way A e Pa+1{w' Hence we hava

Tour edges (p,f), (P tmA), {psg) with f, =z, hy g € Faﬂw} and p €
I‘a+2{v}. This impiies c‘_“‘z = 4,

Lemma 5,11, If there is ne column of lype (1,21} then €y = 2.

Proof, Let o be the humber of columns of t¥pe (1,1,2}, then
d2a+1  Let u be & vertex in o.

We have ¢y # 3 zince Il"a{u}] dees not divided by 3. Aszume
€g =4 Take a vertex z jn l"a{u} and take ¥ and z in I‘a+l{u} which
are adjacent tg z, Then there ig g vertex w which ig adjacent to 2
and ¥, and there ig s Yertex p which isg adjacent to £ ang ¥. We have
W, rE Fa{uj since a, = o, Since an =1, we have w = £, Then ¥ and
2 are adjacent tog and w, a contradiction, 30 we have ed = 4,

Now we assume ¢¢= 1 Fix an edge (u,9} ang put aj:{z} = af{z: u, v),

T-.
3

D D;f’u,'u}l. Let r be & verieax jin Baﬂ We have the following two

a+l’




pomsibilitieg,

(1} Eal{z} = e?ltz,i = 1, Eg{:-.'} = 2.

(4%} e::‘:z} =1, egf;tl = 3.

- @+l Q _ - a+l .
Put 4 = {xE‘Da-rlI eﬂ{x}-zl. A = {=ED{I+1| aﬂ{m}-a}.

Agssume there iz an edge |2, with re 4, yveB Since e:i{y} z1,

there is an edge {12} with 2z g Dg. Take edges (z,p), {r.2) with p ¢ Dg-i-l’
gc Dgﬂ. Since G is locally triangular, thers iz a vertsx W, which is

Bdjacent to r and o3 Aleo we can take a vartex 1.u2 which is adjacent

to ¥ and q. Clearly Wy # W, Hence y=z W, or y= W,y  We may assume

¥=w,. Then there is two edges (¥,p), (¥,2) with Y e Fa+1“” and

meEe I‘a{ul. thiz contradicts to ey = 1.  Hence there is no edga between

A and B.
By Lemma 3.3, there is no edge between ¥ = J b’ and ¥ =
T
13r5a
Drl. Hence there is no edge betwsan XUPB and ¥Fij4d, This
13754
implies that there {8 no path of lsngth £ d between B and D?. a
contradiction,
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S.4. Proof of The Clagaitication Theorem

In this section, we shall i1se the notationz in gection 5,3, Assume
@ =1L Then by the lemmas proved in section 4, the intersaction array

of & takes one of the following forms.

1 s 1114 g1 ... 1l 2
type 1: 1 .. 120 y type 2 : 01 ... . 12
4+ 2 . 2149 1 2 ., 20

Propoeition 5.12, Ir the intersecfion array aof G {g of lype 1, the

friangle graph G of G is o Moore §raph withk valency three.

Pragf. Let o be the number of columne of type {1.1:2) in the
intersection array of (. Fix an edge {uv) and put D: = D;{u,ﬂ,
e::f:..-j z e‘:{z; U, Y. By the lemmas described in Chapter 3, the intersection

diagram of ¢ takez the following form.

- 2 a=-1 a a+l
[wjz B ___-DE__DE__""" —..Da —_— ﬂa"l'l ﬂa+2
| v
[ —.p p¥_____ parl
£ T e arl
| / N
3 cr+1

- a+2
W)= pj— o Py =Dy _— D% a1
The numbers e‘: {z} are determined as followe.

1 -1 . D - *l -
{({) For x & ﬂ'l, 25 {:}-c_lt.t] =1, e+1{z}-2

(i) For z €p] , p:_'”, USrsa-n @ =edm=1, o Hz) = 2,
(iti} For z ep“ atl? 1{:1 = 01.':] = eﬂ iz = eﬂ{z} =L

. T+l - - - -

{tv) For z €L _1;':: = aut.r} = eH{:rl e =L




x+]
a+l?

{v)] For T |

one of the followings holds.

-1 - 0._._0 -+l -
fﬂ-:lE_lfI] - ED{zJ - E+1{=j - ﬂ {z.l - ll

-1 _ .0 _ _ _+1
[b}eﬂ [z} = e_liz} = eﬂl,’z.'r -eu (z)

o+l
Da-!-ﬂ’

.. o+
{1ii} For z ¢ ﬂq+ll

Now let G be the triangle graph of 4.

(i) Por r € ej[:] = ej{z}

in section 5.2.

Wa define FT:E: ={z | Jlu, ) =7h

Then we get the followinge,

i {i) For Z=u,

vertax x = (%), @y 2} in & satisfies one of

iz, w) = alZ,u) =0,

1.

Lo ) =2,

-1 - .=1 - -1 -
E-I{Z}-E‘F].{:} - ll ﬂ‘u {2‘-‘}-2.
We shall use the natationg defined

Take a vartex w in ﬂi and put ¥ = {u, v, w}. Then every

the fellowings (by rearranging

the order of 211 Eqn Ta)e

i 2 = %
(i) z, € ﬂ:_l, £o1 Ty € D:*I, 3,3 zr (1Sr3% al
) £, €07, zpz,€0],, FE@IIr (srsan
@) 7 €0, zuz,edltl, TuB=r Qsrgal
(v) 2y € Dﬁ“, Z, € Bg:}, 7, € Bgﬁ, Flu, 1) = g+l.
Wi 3 e D7, 2, e D5 2, e0Mt) F@E =g

| i) 2y € DL 2y €0%TL 2, €02 B@E = avs.

For T & -ﬁf{i}’ we define
g {F, u) = | T"I{E} r‘*.F,,_{E} I,
bz ul= | T, NT, |,

clmmz I T@mNT .

b{x,u) = 3.

(i1} For EEchE} lsrgea) cir, @)= aiz, ul=0,51(z, 2 =2

(iii) Por r & Fq+1{uh

Remark that the values a(Z, &), & (7, &), ¢ (Z, u) are

rather than the individual vertices u,z.

with the fntersection array

cix,u) = 1, a (T, u) = 2, Bilx,u) = 0.

depends only on =

Hence G is distance-regtlar



where the number of colums of type {1,0,2) i @, Hence z is a Moore

Eraph.

Propeaition 5.13.  If the infersection array of & is of type 2, the

triangle graph G is a generalfized poiygon.

Proof.  We shall use the same notationa in the proof of Proposition 5.12.

In thia cage, the intersection dingram of < takes the following form.

- U 1 2 a-1 o
ful = Dl —_— DZ "'_DS_ sreran _Dcr _Da-!-l

\Jl p? o« , \n“”
1‘—- 2 e — *raram H I a_+1
]
o 2 3 " x+1
()= By P} D} D% B

Tha numbers are determined as follows by using lemmss in Chapter 3 and
by using the fact that & is locally triangulsr.
1 -1, . _ 0 - +1
(i} Por z £ ﬂl. eq {x) = u_l{zj =1, eﬂ[::]L = 2.

(ii) For z DT pTtl

el r 1+ UE73a-1) e:iiz} = egtzl s 1, e::t;ﬂ =2

&
{i{i) For = E'Dcrﬂ’
a+l

a 1

e:;:.ﬂ = ag{z:- = 9:1{9:} = agli.ﬂ =1,

0

{iv) For z €n ejrx} = egle = a:}{z} = eﬂlzl =1,

. x+l -1 _ D S | _ @ -
{w) For z € Da+1' e_lt:c} = aﬂ[;r:} = e, (x) = e_li:c} =1,
We describe the proof of (v), others are &AsY, It is ensy to ahow that

cne of the followings holde.
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fa) c::'[:} = eg(z} = e{_}l{xj e?ltzj = 1,

-1, . . 0 .
®) etz = e (m = o2

@, _,a-1 a+l, | . a
But we have IB‘I[ =2 and Iﬂa'*lr =27,

By counting the number

of edges between 0% and Daﬂ, we got that (&) doea not cccur, ao (u)
o o+l

haa been proved.

Let u=z{u,v,w), where B%: fw). Then everyr vertex r in &
eatiafies one of the followings.

Mz = u _

U0z en |, oz, z, e, FEmmar g TS al

(W) z e 7Y, TpZ €D, FEEzr (lsrsgq

r+1

. T el TR
{iv} z €5, TpEy €D, Jiu, zy =7 (1Er5 a)

1

¥
() zl £ Dafﬂ' Ef

Then it is not difficult

1 +1 - -
g € D:+ : EyE D:+1, A, ) = g+1.

to show that G jg = distance-regular graph with

the following [ntarsection BIrTAaY.

01 . e 13
00 v 0 0O
J 2 e 20

Bence & i a generalized polygon.

Proof of Thecrem 3.1, Since the girth of G ig thrae, the intereection

number G, cannot be zero, an al =1, £ or 3. if n.l = 3, it will be

the complete Eraph }'1'5. If

Bhow that & is isomorphie to Uetahedron,

directly checked that £ ig izomorphic to
@ =2, it is not difficult to
We leave the proofs of theee facts to the readar.

50 we may assume %4, =1.  Then the triangle graph @ iz a Moore

graph or a generarized polygen by Proposition §5.12 end Propeaition 5,13,

Then € iz isomorphic to the line graph of & by Lemma 5.3,
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