The universal Askey-Wilson algebra

Paul Terwilliger

University of Wisconsin-Madison

Paul Terwilliger The universal Askey-Wilson algebra

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

This talk concerns an algebra Δ called the **Universal** Askey-Wilson algebra.

As we will see, Δ is related to:

- Leonard pairs and Leonard triples of QRacah type
- Q-polynomial distance-regular graphs of QRacah type
- The modular group $\mathrm{PSL}_2(\mathbb{Z})$
- The equitable presentation of the quantum group $U_q(\mathfrak{sl}_2)$
- The double affine Hecke algebra of type (C_1^{\vee}, C_1)

(ロ) (同) (E) (E) (E)

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

(2	3	0	0 \		(2	3	0	0 \	
1	4	2	0		0	4	2	0	
0	5	3	3	,	0	2	1	0	
0 /	0	3	0 /		0	0	1	5 /	

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is **irreducible**. This means each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

・ロト ・回ト ・ヨト ・ヨト

We now define a Leonard pair. From now on ${\mathbb F}$ will denote a field.

Definition (Terwilliger 1999)

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a **Leonard pair** on V, we mean a pair of linear transformations $A: V \to V$ and $B: V \to V$ such that:

- There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing B is irreducible tridiagonal.
- **2** There exists a basis for V with respect to which the matrix representing B is diagonal and the matrix representing A is irreducible tridiagonal.

・ロト ・回ト ・ヨト ・ヨト

In summary, for a Leonard pair A, B

	A	В
basis 1	diagonal	irred. tridiagonal
basis 2	irred. tridiagonal	diagonal

・ロト ・回ト ・ヨト ・ヨト

æ

The term **Leonard pair** is motivated by a 1982 theorem of **Doug Leonard** concerning the QRacah polynomials and some related polynomials in the Askey scheme.

For a detailed version of Leonard's theorem see the book

E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin Cummings. London 1984.

・同下 ・ヨト ・ヨト

Here is an example of a Leonard pair.

Fix an integer $d \ge 3$. Pick nonzero scalars a, b, c, q in \mathbb{F} such that

(i)
$$q^{2i} \neq 1$$
 for $1 \le i \le d$;
(ii) Neither of a^2 , b^2 is among q^{2d-2} , q^{2d-4} , ..., q^{2-2d} ;
(iii) None of *abc*, $a^{-1}bc$, $ab^{-1}c$, abc^{-1} is among q^{d-1} , q^{d-3} , ..., q^{1-d} .

(本語)と (本語)と (本語)と

Define

$$\begin{array}{rcl} \theta_i &=& aq^{2i-d} + a^{-1}q^{d-2i}, \\ \theta_i^* &=& bq^{2i-d} + b^{-1}q^{d-2i} \end{array}$$

for $0 \le i \le d$ and

$$arphi_i = a^{-1}b^{-1}q^{d+1}(q^i-q^{-i})(q^{i-d-1}-q^{d-i+1}) \ (q^{-i}-abcq^{i-d-1})(q^{-i}-abc^{-1}q^{i-d-1})$$

for $1 \leq i \leq d$.

イロン イヨン イヨン イヨン

Э

Leonard pair example, cont.

Define

< 🗗 🕨

- Then the pair A, B is a Leonard pair on the vector space $V = \mathbb{F}^{d+1}$.
- A Leonard pair of this form is said to have **QRacah type**. This is the most general type of Leonard pair.

・ロン ・回 と ・ ヨ と ・ ヨ と

Hau-wen Huang (former student of **Chih-wen Weng** in the Department of Applied Math, National Chiao Tung University, Taiwan) has proven the following beautiful theorem about the Leonard pairs of QRacah type.

(日本) (日本) (日本)

Theorem (Hau-wen Huang 2011)

Referring to the above Leonard pair A, B of QRacah type, there exists an element C such that

$$\begin{aligned} A + \frac{qBC - q^{-1}CB}{q^2 - q^{-2}} &= \frac{(a + a^{-1})(q^{d+1} + q^{-d-1}) + (b + b^{-1})(c + c^{-1})}{q + q^{-1}} I, \\ B + \frac{qCA - q^{-1}AC}{q^2 - q^{-2}} &= \frac{(b + b^{-1})(q^{d+1} + q^{-d-1}) + (c + c^{-1})(a + a^{-1})}{q + q^{-1}} I, \\ C + \frac{qAB - q^{-1}BA}{q^2 - q^{-2}} &= \frac{(c + c^{-1})(q^{d+1} + q^{-d-1}) + (a + a^{-1})(b + b^{-1})}{q + q^{-1}} I. \end{aligned}$$

The above equations are called the \mathbb{Z}_3 -symmetric Askey-Wilson relations.

・ロン ・回 と ・ ヨ と ・ ヨ と

In the previous example the \mathbb{Z}_3 -symmetry involving A, B, C suggests that we should consider Leonard triples along with Leonard pairs.

The notion of a Leonard triple is due to **Brian Curtin** and defined as follows.

Definition (Brian Curtin 2007)

By a **Leonard triple** on V we mean an ordered triple of linear transformations (A, B, C) in End(V) such that for each $\phi \in \{A, B, C\}$ there exists a basis for V with respect to which the matrix representing ϕ is diagonal and the matrices representing the other two linear transformations are irreducible tridiagonal.

・ロト ・回ト ・ヨト ・ヨト

In summary, for a Leonard triple A, B, C

	A	В	С
basis 1	diagonal	irred. tridiagonal	irred. tridiagonal
basis 2	irred. tridiagonal	diagonal	irred. tridiagonal
basis 3	irred. tridiagonal	irred. tridiagonal	diagonal

・ロン ・回 と ・ ヨン ・ ヨン

э

For a moment let us return to our Leonard pair A, B of QRacah type.

Consider the element *C* from the \mathbb{Z}_3 -symmetric Askey-Wilson relations.

Huang has found necessary and sufficient conditions on C for the triple A, B, C to be a Leonard triple.

This is explained in the next two theorems.

・同下 ・ヨト ・ヨト

Theorem (Hau-wen Huang 2011)

The roots of the characteristic polynomial of C are $\{\theta_i^{\varepsilon}\}_{i=0}^d$, where

$$\theta_i^{\varepsilon} = cq^{2i-d} + c^{-1}q^{d-2i} \qquad (0 \le i \le d)$$

Paul Terwilliger The universal Askey-Wilson algebra

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Hau-wen Huang 2011)

The following (i)-(iii) are equivalent.

(i) The triple A, B, C is a Leonard triple;

(ii)
$$\{\theta_i^{\varepsilon}\}_{i=0}^d$$
 are mutually distinct;

(iii) c^2 is not among $q^{2d-2}, q^{2d-4}, \dots, q^{2-2d}$.

The above Leonard triple is said to have **QRacah type**.

In 1992 Alexei Zhedanov introduced the Askey-Wilson algebra AW=AW(3) and used it to describe the Askey-Wilson polynomials.

Essentially, AW is the algebra defined by three generators A, B, C subject to the \mathbb{Z}_3 -symmetric Askey-Wilson relations (The original definition was somewhat different).

The algebra AW is defined using four parameters a, b, c, q.

・ロト ・回ト ・ヨト ・ヨト

We now define a central extension of AW, called the **universal** Askey-Wilson algebra and denoted Δ .

The algebra Δ involves just one parameter q.

The algebra Δ is defined as follows.

For the rest of the talk, q denotes a nonzero scalar in $\mathbb F$ such that $q^4
eq 1.$

Definition (Ter 2011)

Define an \mathbb{F} -algebra $\Delta = \Delta_q$ by generators and relations in the following way. The generators are A, B, C. The relations assert that each of

$$A + rac{qBC - q^{-1}CB}{q^2 - q^{-2}}, \quad B + rac{qCA - q^{-1}AC}{q^2 - q^{-2}}, \quad C + rac{qAB - q^{-1}BA}{q^2 - q^{-2}}$$

is central in Δ . We call Δ the **universal Askey-Wilson algebra**.

▲祠 → ▲ 臣 → ▲ 臣 →

By constuction, each Askey-Wilson algebra AW is a homomorphic image of $\Delta. \label{eq:second}$

By construction, each Leonard pair or triple of QRacah type can be viewed as a Δ -module.

소리가 소문가 소문가 소문가

We now briefly relate Δ to Q-polynomial distance-regular graphs.

Let Γ denote a distance-regular graph with diameter $D \ge 3$ and distance matrices $\{A_i\}_{i=0}^D$.

Assume Γ has a Q-polynomial ordering $\{E_i\}_{i=0}^D$ of its primitive idempotents.

Assume that the *Q*-polynomial structure has QRacah type; this means (in the notation of Bannai/Ito) type I with each of s, s^* nonzero.

Fix a vertex x of Γ . For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the dual distance matrix of Γ that corresponds to E_i and x.

Assume that each irreducible *T*-module is thin. Here T = T(x) is the subconstituent algebra of Γ with respect to *x*, generated by A_1 and A_1^* .

Theorem (Arjana Zitnik, Ter, in preparation)

With the above assumptions and notation, there exists a surjective algebra homomorphism $\Delta \rightarrow T$ that sends the generator A to a linear combination of I, A_1 and the generator B to a linear combination of I, A_1^* .

< ロ > < 回 > < 回 > < 回 > < 回 > <

We now describe Δ from a ring theoretic point of view.

Definition

Define elements α, β, γ of Δ such that

$$\begin{aligned} A + \frac{qBC - q^{-1}CB}{q^2 - q^{-2}} &= \frac{\alpha}{q + q^{-1}}, \\ B + \frac{qCA - q^{-1}AC}{q^2 - q^{-2}} &= \frac{\beta}{q + q^{-1}}, \\ C + \frac{qAB - q^{-1}BA}{q^2 - q^{-2}} &= \frac{\gamma}{q + q^{-1}}. \end{aligned}$$

Note that each of α , β , γ is central in Δ .

・ロン ・回 と ・ ヨ と ・ ヨ と

The following is a basis for the \mathbb{F} -vector space Δ :

 $A^{i}B^{j}C^{k}\alpha^{r}\beta^{s}\gamma^{t}$ $i, j, k, r, s, t \in \mathbb{N}.$

We proved this using the Bergman Diamond Lemma.

(ロ) (同) (E) (E) (E)

Recall that the modular group $\mathrm{PSL}_2(\mathbb{Z})$ has a presentation by generators p, s and relations $p^3 = 1, s^2 = 1$.

Our next goal is to show that $\mathrm{PSL}_2(\mathbb{Z})$ acts on Δ as a group of automorphisms.

Strategy: identify two automorphisms of Δ that have orders 3 and 2.

By construction Δ has an automorphism that sends

 $A \mapsto B \mapsto C \mapsto A$.

This automorphism has order 3.

To find an automorphism of Δ that has order 2, we use another presentation for Δ .

(ロ) (同) (E) (E) (E)

The algebra Δ has a presentation by generators A, B, γ and relations

$$\begin{aligned} A^{3}B - [3]_{q}A^{2}BA + [3]_{q}ABA^{2} - BA^{3} &= -(q^{2} - q^{-2})^{2}(AB - BA), \\ B^{3}A - [3]_{q}B^{2}AB + [3]_{q}BAB^{2} - AB^{3} &= -(q^{2} - q^{-2})^{2}(BA - AB), \\ A^{2}B^{2} - B^{2}A^{2} + (q^{2} + q^{-2})(BABA - ABAB) \\ &= -(q - q^{-1})^{2}(AB - BA)\gamma, \\ \gamma A &= A\gamma, \qquad \gamma B = B\gamma. \end{aligned}$$

Here $[n]_q = (q^n - q^{-n})/(q - q^{-1}).$

The first two relations above are the tridiagonal relations.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

By the alternate presentation Δ has an automorphism that swaps A, B and fixes $\gamma.$

This automorphism has order 2.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

The group $\mathrm{PSL}_2(\mathbb{Z})$ acts on Δ as a group of automorphisms in the following way:

This action is faithful.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Shortly we will describe the center $Z(\Delta)$.

To do this we introduce a certain element $\Omega\in\Delta$ called the Casimir element.

Definition Define $\Omega = q^{-1}ACB + q^{-2}A^2 + q^{-2}B^2 + q^2C^2 - q^{-1}A\alpha - q^{-1}B\beta - qC\gamma$

We call Ω the **Casimir element** of Δ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The Casimir element Ω is contained in $Z(\Delta)$.

Moreover Ω is fixed by everything in $PSL_2(\mathbb{Z})$.

Paul Terwilliger The universal Askey-Wilson algebra

・ロン ・回 と ・ 回 と ・ 回 と

3

We are going to show that $Z(\Delta)$ is generated by $\Omega, \alpha, \beta, \gamma$ provided that q is not a root of unity.

To this end we display a basis for Δ that involves Ω .

Lemma (Ter 2011)The following is a basis for the \mathbb{F} -vector space Δ : $A^i B^j C^k \Omega^\ell \alpha^r \beta^s \gamma^t$ $i, j, k, \ell, r, s, t \in \mathbb{N}$ ijk = 0.

・ロン ・回 と ・ ヨ と ・ ヨ と

Corollary (Ter 2011)

The elements $\Omega, \alpha, \beta, \gamma$ are algebraically independent over \mathbb{F} .

Paul Terwilliger The universal Askey-Wilson algebra

(1日) (日) (日)

Э

We now describe the center $Z(\Delta)$.

Theorem (Ter 2011)

Assume that q is not a root of unity. Then the algebra $Z(\Delta)$ is generated by $\Omega, \alpha, \beta, \gamma$.

Moreover $Z(\Delta)$ is isomorphic to a polynomial algebra in four variables.

(ロ) (同) (E) (E) (E)

Our next goal is to explain how Δ is related to the quantum group $U_q(\mathfrak{sl}_2)$.

Definition

The $\mathbb F\text{-algebra}\ U=U_q(\mathfrak{sl}_2)$ is defined by generators $e,f,k^{\pm 1}$ and relations

$$kk^{-1} = k^{-1}k = 1,$$

 $ke = q^{2}ek, \qquad kf = q^{-2}fk,$
 $ef - fe = rac{k - k^{-1}}{q - q^{-1}}.$

We call $e, f, k^{\pm 1}$ the **Chevalley generators** for U.

・ロト ・回ト ・ヨト ・ヨト

We review the finite-dimensional irreducible modules for $U_q(\mathfrak{sl}_2)$.

Lemma

For all integers $d \ge 0$ and $\varepsilon \in \{1, -1\}$ there exists a U-module $V_{d,\varepsilon}$ with the following property: $V_{d,\varepsilon}$ has a basis $\{v_i\}_{i=0}^d$ such that

$$\begin{aligned} k v_i &= \varepsilon q^{d-2i} v_i \quad (0 \le i \le d), \\ f v_i &= [i+1]_q v_{i+1} \quad (0 \le i \le d-1), \quad f v_d = 0, \\ e v_i &= \varepsilon [d-i+1]_q v_{i-1} \quad (1 \le i \le d), \quad e v_0 = 0. \end{aligned}$$

The U-module $V_{d,\varepsilon}$ is irreducible provided that q is not a root of unity.

・ 同 ト ・ ヨ ト ・ ヨ ト

Earlier we gave a Casimir element for Δ . The algebra U also has a Casimir element, which we now recall.

Definition

Define $\Lambda \in U$ as follows:

$$\Phi = ef(q - q^{-1})^2 + q^{-1}k + qk^{-1}.$$

We call Λ the (normalized) **Casimir element** of *U*.

・ロン ・回 と ・ ヨ と ・ ヨ と

The following result is well known.

Lemma

The Casimir element Λ is in the center Z(U). Moreover on the U-module $V_{d,\varepsilon}$

$$\Lambda = \varepsilon (q^{d+1} + q^{-d-1})I.$$

・ロン ・回 と ・ ヨン ・ ヨン

The equitable presentation of $U_q(\mathfrak{sl}_2)$

When we defined U we used the Chevalley presentation. There is another presentation for U of interest, said to be **equitable**.

Lemma (Tatsuro Ito, Chih-wen Weng, Ter 2000)

The algebra U has a presentation by generators $x, y^{\pm 1}, z$ and relations

$$yy^{-1} = y^{-1}y = 1,$$

$$\frac{qxy - q^{-1}yx}{q - q^{-1}} = 1,$$

$$\frac{qyz - q^{-1}zy}{q - q^{-1}} = 1,$$

$$\frac{qzx - q^{-1}xz}{q - q^{-1}} = 1.$$

We call $x, y^{\pm 1}, z$ the **equitable generators** for *U*.

In the equitable presentation the U-module $V_{d,\varepsilon}$ looks as follows.

 $V_{d,\varepsilon}$ has three bases such that:

	X	У	Ζ
basis 1	diagonal	lower bidiagonal	upper bidiagonal
basis 2	upper bidiagonal	diagonal	lower bidiagonal
basis 3	lower bidiagonal	upper bidiagonal	diagonal

In the equitable presentation of U the Casimir element looks as follows.

Lemma (Ter 2011)

The Casimir element Λ is equal to each of the following:

$$\begin{array}{ll} qx + q^{-1}y + qz - qxyz, & q^{-1}x + qy + q^{-1}z - q^{-1}zyx, \\ qy + q^{-1}z + qx - qyzx, & q^{-1}y + qz + q^{-1}x - q^{-1}xzy, \\ qz + q^{-1}x + qy - qzxy, & q^{-1}z + qx + q^{-1}y - q^{-1}yxz. \end{array}$$

▲祠 → ▲ 臣 → ▲ 臣 →

We are now ready to describe how Δ is related to $U_q(\mathfrak{sl}_2)$.

Lemma (Ter 2011)

Let a, b, c denote nonzero scalars in \mathbb{F} . Then there exists an \mathbb{F} -algebra homomorpism $\Delta \to U_q(\mathfrak{sl}_2)$ that sends

$$A \mapsto xa + ya^{-1} + \frac{xy - yx}{q - q^{-1}}bc^{-1},$$

$$B \mapsto yb + zb^{-1} + \frac{yz - zy}{q - q^{-1}}ca^{-1},$$

$$C \mapsto zc + xc^{-1} + \frac{zx - xz}{q - q^{-1}}ab^{-1}.$$

The above homomorphism is not injective. To shrink the kernel we do the following.

・ロット (四) (日) (日)

From now on let *a*, *b*, *c* denote **mutually commuting indeterminates**.

Let $\mathbb{F}[a^{\pm 1}, b^{\pm 1}, c^{\pm 1}]$ denote the \mathbb{F} -algebra of Laurent polynomials in *a*, *b*, *c* that have all coefficients in \mathbb{F} .

Consider the $\mathbb F\text{-algebra}$

$$U\otimes \mathbb{F}[a^{\pm 1},b^{\pm 1},c^{\pm 1}],$$

where $U = U_q(\mathfrak{sl}_2)$ and $\otimes = \otimes_{\mathbb{F}}$.

(ロ) (同) (E) (E) (E)

There exists an injective \mathbb{F} -algebra homomorphism $\natural : \Delta \to U \otimes \mathbb{F}[a^{\pm 1}, b^{\pm 1}, c^{\pm 1}]$ that sends

$$\begin{array}{rcl} A & \mapsto & x \otimes a + y \otimes a^{-1} + \frac{xy - yx}{q - q^{-1}} \otimes bc^{-1}, \\ B & \mapsto & y \otimes b + z \otimes b^{-1} + \frac{yz - zy}{q - q^{-1}} \otimes ca^{-1}, \\ C & \mapsto & z \otimes c + x \otimes c^{-1} + \frac{zx - xz}{q - q^{-1}} \otimes ab^{-1}, \end{array}$$

where x, y, z denote the equitable generators for U.

Paul Terwilliger The universal Askey-Wilson algebra

< ロ > < 回 > < 回 > < 回 > < 回 > <

The homomorphism \\$ sends

$$\begin{array}{rcl} \alpha & \mapsto & \Lambda \otimes (a+a^{-1})+1 \otimes (b+b^{-1})(c+c^{-1}), \\ \beta & \mapsto & \Lambda \otimes (b+b^{-1})+1 \otimes (c+c^{-1})(a+a^{-1}), \\ \gamma & \mapsto & \Lambda \otimes (c+c^{-1})+1 \otimes (a+a^{-1})(b+b^{-1}), \end{array}$$

where Λ denotes the Casimir element of U.

< □ > < @ > < 注 > < 注 > ... 注

Under the homomorphism \natural the image of the Casimir element Ω is

$$\begin{array}{l} 1\otimes (q+q^{-1})^2 - \Lambda^2 \otimes 1 - 1\otimes (a+a^{-1})^2 - 1\otimes (b+b^{-1})^2 \\ -1\otimes (c+c^{-1})^2 - \Lambda \otimes (a+a^{-1})(b+b^{-1})(c+c^{-1}) \end{array}$$

where Λ denotes the Casimir element of U.

< □ > < @ > < 注 > < 注 > ... 注

- Our next goal is to describe how Δ is related to the double affine Hecke algebra (DAHA) of type (C_1^{\vee}, C_1) .
- This is the most general DAHA of rank 1.
- We will work with the "universal" version of DAHA.
- For notational convenience define a four element set

$$\mathbb{I}=\{0,1,2,3\}.$$

▲祠 ▶ ★ 注 ▶ ★ 注 ▶

The universal DAHA of type (C_1^{\vee}, C_1)

Definition

Let \hat{H}_q denote the $\mathbb{F}\text{-algebra defined by generators }\{t_i^{\pm 1}\}_{i\in\mathbb{I}}$ and relations

$$t_i t_i^{-1} = t_i^{-1} t_i = 1$$
 $i \in \mathbb{I},$
 $t_i + t_i^{-1}$ is central $i \in \mathbb{I},$
 $t_0 t_1 t_2 t_3 = q^{-1}.$

We call \hat{H}_q the universal DAHA of type (C_1^{\vee}, C_1) .

For notational convenience define

$$T_i = t_i + t_i^{-1} \qquad i \in \mathbb{I}.$$

・ロット (日本) (日本) (日本)

We will describe how Δ is related to \hat{H}_q .

To set the stage we first mention a few basic features of \hat{H}_q . Define

$$X = t_3 t_0, \qquad \qquad Y = t_0 t_1.$$

Note that X, Y are invertible.

・ロン ・回と ・ヨン・

The following is a basis for the \mathbb{F} -vector space \hat{H}_q :

 $Y^{i}X^{j}t_{0}^{k}T_{1}^{r}T_{2}^{s}T_{3}^{t} \qquad i,j,k \in \mathbb{Z} \qquad r,s,t \in \mathbb{N}.$

This can be proven using the Bergman Diamond Lemma.

・ロト ・回ト ・ヨト ・ヨト

Corollary (Ter 2012)

The following are algebraically independent over \mathbb{F} :

 $t_0,\quad T_1,\quad T_2,\quad T_3.$

Corollary (Ter 2012)

The following are algebraically independent over \mathbb{F} :

$$T_0, T_1, T_2, T_3.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

We now describe the center $Z(\hat{H}_q)$.

Theorem (Ter 2012)

Assume that q is not a root of unity. Then the algebra $Z(\hat{H}_q)$ is generated by $\{T_i\}_{i \in I}$.

Moreover $Z(\hat{H}_q)$ is isomorphic to a polynomial algebra in four variables.

・ロット (日本) (日本) (日本)

We mention some automorphisms of \hat{H}_q .

We start with an obvious one.

There exists an automorphism of \hat{H}_q that sends

 $t_0 \mapsto t_1 \mapsto t_2 \mapsto t_3 \mapsto t_0.$

We call this \mathbb{Z}_4 -symmetry.

This symmetry sends

$$X\mapsto Y\mapsto q^{-1}X^{-1}\mapsto q^{-1}Y^{-1}\mapsto X.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

We will be discussing the Artin braid group B_3 .

Definition

The group B_3 is defined by generators ρ, σ and relations $\rho^3 = \sigma^2$. For notational convenience define $\tau = \rho^3 = \sigma^2$.

There exists a group homomorphism $B_3 \to \mathrm{PSL}_2(\mathbb{Z})$ that sends $\rho \mapsto p$ and $\sigma \mapsto s$. Via this homomorphism we pull back the $\mathrm{PSL}_2(\mathbb{Z})$ action on Δ , to get a B_3 action on Δ as a group of automorphisms.

Next we explain how B_3 acts on \hat{H}_q as a group of automorphisms.

・ロン ・回と ・ヨン ・ヨン

Lemma

The group B_3 acts on \hat{H}_q as a group of automorphisms such that $\tau(h) = t_0^{-1}ht_0$ for all $h \in \hat{H}_q$ and ρ, σ do the following:

$$\begin{array}{c|ccccc} h & t_0 & t_1 & t_2 & t_3 \\ \hline \rho(h) & t_0 & t_0^{-1} t_3 t_0 & t_1 & t_2 \\ \sigma(h) & t_0 & t_0^{-1} t_3 t_0 & t_1 t_2 t_1^{-1} & t_1 \end{array}$$

∃ >

Lemma

The B_3 action on \hat{H}_q does the following to the central elements $\{T_i\}_{i \in \mathbb{I}}$. The generator τ fixes every central element. The generators ρ, σ satisfy the table below.

We are now ready to describe how Δ is related to \hat{H}_q .

3 N

There exists an injective \mathbb{F} -algebra homomorphism $\psi : \Delta \to \hat{H}_q$ that sends

$$\begin{array}{rcl} A & \mapsto & t_1 t_0 + (t_1 t_0)^{-1}, \\ B & \mapsto & t_3 t_0 + (t_3 t_0)^{-1}, \\ C & \mapsto & t_2 t_0 + (t_2 t_0)^{-1}. \end{array}$$

・ロン ・回 と ・ ヨン ・ ヨン

æ

The homomorphism ψ sends

$$\begin{array}{rcl} \alpha & \mapsto & (q^{-1}t_0 + qt_0^{-1})(t_1 + t_1^{-1}) + (t_2 + t_2^{-1})(t_3 + t_3^{-1}), \\ \beta & \mapsto & (q^{-1}t_0 + qt_0^{-1})(t_3 + t_3^{-1}) + (t_1 + t_1^{-1})(t_2 + t_2^{-1}), \\ \gamma & \mapsto & (q^{-1}t_0 + qt_0^{-1})(t_2 + t_2^{-1}) + (t_3 + t_3^{-1})(t_1 + t_1^{-1}). \end{array}$$

・ロン ・回 と ・ ヨン ・ ヨン

Э

Under the homomorphism ψ the image of the Casimir element Ω is

$$(q+q^{-1})^2 - (q^{-1}t_0 + qt_0^{-1})^2 - (t_1 + t_1^{-1})^2 - (t_2 + t_2^{-1})^2 - (t_3 + t_3^{-1})^2 - (q^{-1}t_0 + qt_0^{-1})(t_1 + t_1^{-1})(t_2 + t_2^{-1})(t_3 + t_3^{-1}).$$

< ロ > < 回 > < 回 > < 回 > < 回 > <

æ

For all $g \in B_3$ the following diagram commutes:

Paul Terwilliger The universal Askey-Wilson algebra

< □ > < @ > < 注 > < 注 > ... 注

Now consider the image of Δ under ψ .

As we will see, this image is related to the "spherical subalgebra"

$$\{h\in \hat{H}_q|t_0h=ht_0\}.$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Consider the image of Δ under ψ . The spherical subalgebra $\{h \in \hat{H}_q | t_0 h = h t_0\}$ is generated by this image together with $t_0^{\pm 1}, T_1, T_2, T_3$.

Notation

For notational convenience, from now on identify Δ with its image under the injection $\psi : \Delta \rightarrow \hat{H}_q$.

From this point of view

$$A = t_1 t_0 + (t_1 t_0)^{-1} = t_0 t_1 + (t_0 t_1)^{-1} = Y + Y^{-1},$$

$$B = t_3 t_0 + (t_3 t_0)^{-1} = t_0 t_3 + (t_0 t_3)^{-1} = X + X^{-1},$$

$$C = t_2 t_0 + (t_2 t_0)^{-1} = t_0 t_2 + (t_0 t_2)^{-1},$$

$$\begin{aligned} \alpha &= (q^{-1}t_0 + qt_0^{-1})T_1 + T_2T_3, \\ \beta &= (q^{-1}t_0 + qt_0^{-1})T_3 + T_1T_2, \\ \gamma &= (q^{-1}t_0 + qt_0^{-1})T_2 + T_3T_1, \end{aligned}$$

$$egin{aligned} \Omega &= (q+q^{-1})^2 - (q^{-1}t_0 + qt_0^{-1})^2 - T_1^2 - T_2^2 - T_3^2 \ &- (q^{-1}t_0 + qt_0^{-1}) T_1 T_2 T_3. \end{aligned}$$

・ロン ・回 と ・ 回 と ・ 回 と

3

A presentation for the spherical subalgebra by generators and relations

We now give a presentation of the spherical subalgebra $\{h \in \hat{H}_q | t_0 h = h t_0\}$ by generators and relations.

This will be our last result of the talk.

・ 同 ト ・ ヨ ト ・ ヨ ト

The spherical subalgebra $\{h \in \hat{H}_q | t_0 h = ht_0\}$ is presented by generators and relations in the following way. The generators are A, B, C, $t_0^{\pm 1}$, $\{T_i\}_{i=1}^3$. The relations assert that each of $t_0^{\pm 1}$, $\{T_i\}_{i=1}^3$ is central and $t_0t_0^{-1} = 1$, $t_0^{-1}t_0 = 1$,

$$\begin{aligned} A + \frac{qBC - q^{-1}CB}{q^2 - q^{-2}} &= \frac{\alpha}{q + q^{-1}}, \\ B + \frac{qCA - q^{-1}AC}{q^2 - q^{-2}} &= \frac{\beta}{q + q^{-1}}, \\ C + \frac{qAB - q^{-1}BA}{q^2 - q^{-2}} &= \frac{\gamma}{q + q^{-1}}, \\ q^{-1}ACB + q^{-2}A^2 + q^{-2}B^2 + q^2C^2 - q^{-1}A\alpha - q^{-1}B\beta - qC\gamma \\ &= (q + q^{-1})^2 - (q^{-1}t_0 + qt_0^{-1})^2 - T_1^2 - T_2^2 - T_3^2 \\ &- (q^{-1}t_0 + qt_0^{-1})T_1T_2T_3, \end{aligned}$$

Paul Terwilliger

The universal Askey-Wilson algebra

Theorem

where

$$\begin{aligned} \alpha &= (q^{-1}t_0 + qt_0^{-1})T_1 + T_2T_3, \\ \beta &= (q^{-1}t_0 + qt_0^{-1})T_3 + T_1T_2, \\ \gamma &= (q^{-1}t_0 + qt_0^{-1})T_2 + T_3T_1. \end{aligned}$$

Paul Terwilliger The universal Askey-Wilson algebra

(1日) (日) (日)

3

In this talk we introduced the universal Askey-Wilson algebra Δ .

We showed how each Leonard pair and Leonard triple of QRacah type yields a $\Delta\text{-module}.$

We discussed how Δ is related to $Q\mbox{-}{\rm polynomial}$ distance-regular graphs of QRacah type.

We gave several bases for Δ , we described its center, and we showed how $\mathrm{PSL}_2(\mathbb{Z})$ acts on Δ as a group of automorphisms.

We described how Δ is related to $U_q(\mathfrak{sl}_2)$.

Finally we described how Δ is related to the universal DAHA of type (C_1^{\vee}, C_1) .

Thank you for your attention!

THE END

(ロ) (同) (E) (E) (E)

Hau-wen Huang. The classification of Leonard triples of QRacah type. *Linear Algebra Appl.* To appear. arXiv:1108.0458.

T. Ito and P. Terwilliger. Double affine Hecke algebras of rank 1 and the \mathbb{Z}_3 -symmetric Askey-Wilson relations. *SIGMA* **6** (2010) 065, 9 pages, arXiv:1001.2764.

P. Terwilliger. The universal Askey-Wilson algebra. *SIGMA* **7** (2011) 069, 24 pages, arXiv:1104.2813.

P. Terwilliger. The universal Askey-Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$. SIGMA **7** (2011) 099, 26 pages, arXiv:1107.3544.

P. Terwilliger. The universal Askey-Wilson algebra and DAHA of type (C_1^{\vee}, C_1) . Submitted for publication.

・ロン ・回 と ・ 回 と ・ 回 と