A classification of sharp tridiagonal pairs

Tatsuro Ito Kazumasa Nomura Paul Terwilliger

This talk concerns a linear algebraic object called a **tridiagonal** pair.

This talk concerns a linear algebraic object called a **tridiagonal** pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

This talk concerns a linear algebraic object called a **tridiagonal** pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We will then define an algebra $\mathbb T$ by generators and relations, and prove a theorem about its structure called the μ -**Theorem**.

This talk concerns a linear algebraic object called a **tridiagonal** pair.

We will describe its features such as the eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We will then define an algebra \mathbb{T} by generators and relations, and prove a theorem about its structure called the μ -**Theorem**.

We will use the μ -Theorem to obtain a **Classification Theorem** for sharp tridiagonal pairs.

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

$$\left(\begin{array}{cccc} 2 & 3 & 0 & 0 \\ 1 & 4 & 2 & 0 \\ 0 & 5 & 3 & 3 \\ 0 & 0 & 3 & 0 \end{array}\right), \qquad \left(\begin{array}{ccccc} 2 & 3 & 0 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 5 \end{array}\right).$$

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

$$\left(\begin{array}{ccccc}
2 & 3 & 0 & 0 \\
1 & 4 & 2 & 0 \\
0 & 5 & 3 & 3 \\
0 & 0 & 3 & 0
\end{array}\right), \qquad
\left(\begin{array}{cccccc}
2 & 3 & 0 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right).$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

We recall the notion of a Leonard pair. To do this, we first recall what it means for a matrix to be **tridiagonal**.

The following matrices are tridiagonal.

$$\left(\begin{array}{cccc} 2 & 3 & 0 & 0 \\ 1 & 4 & 2 & 0 \\ 0 & 5 & 3 & 3 \\ 0 & 0 & 3 & 0 \end{array}\right), \qquad \left(\begin{array}{ccccc} 2 & 3 & 0 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 5 \end{array}\right).$$

Tridiagonal means each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal.

The tridiagonal matrix on the left is **irreducible**. This means each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

The Definition of a Leonard Pair

We now define a Leonard pair. From now on \mathbb{F} will denote a field.

The Definition of a Leonard Pair

We now define a Leonard pair. From now on \mathbb{F} will denote a field.

Definition

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a **Leonard pair** on V, we mean a pair of linear transformations $A:V\to V$ and $A^*:V\to V$ which satisfy both conditions below.

- There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^* is diagonal.
- ② There exists a basis for V with respect to which the matrix representing A^* is irreducible tridiagonal and the matrix representing A is diagonal.

Notation

According to a common notational convention A^* denotes the conjugate-transpose of A.

Notation

According to a common notational convention A^* denotes the conjugate-transpose of A.

We are not using this convention.

Notation

According to a common notational convention A^* denotes the conjugate-transpose of A.

We are not using this convention.

In a Leonard pair A, A^* the linear transformations A and A^* are arbitrary subject to (1), (2) above.

Example of a Leonard pair

For any integer $d \ge 0$ the pair

$$A^* = \operatorname{diag}(d, d-2, d-4, \dots, -d)$$

is a Leonard pair on the vector space \mathbb{F}^{d+1} , provided the characteristic of \mathbb{F} is 0 or an odd prime greater than d.

Example of a Leonard pair

For any integer $d \ge 0$ the pair

$$A^* = \operatorname{diag}(d, d-2, d-4, \dots, -d)$$

is a Leonard pair on the vector space \mathbb{F}^{d+1} , provided the characteristic of \mathbb{F} is 0 or an odd prime greater than d.

Reason: There exists an invertible matrix P such that $P^{-1}AP = A^*$ and $P^2 = 2^dI$

Leonard pairs and orthogonal polynomials

There is a natural correspondence between the Leonard pairs and a family of orthogonal polynomials consisting of the following types:

```
q-Racah,
g-Hahn,
dual q-Hahn,
g-Krawtchouk,
dual q-Krawtchouk,
quantum q-Krawtchouk,
affine q-Krawtchouk,
Racah.
Hahn,
dual-Hahn,
Krawtchouk,
Bannai/Ito,
orphans (char(\mathbb{F}) = 2 only).
```

This family coincides with the terminating branch of the Askey scheme of orthogonal polynomials

Recommended reading

The theory of Leonard pairs is summarized in

P. Terwilliger: An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, 255–330, Lecture Notes in Math., 1883, Springer, Berlin, 2006: arXiv:math.QA/0408390.

We now consider a generalization of a Leonard pair called a **tridiagonal pair**.

We now consider a generalization of a Leonard pair called a **tridiagonal pair**.

A tridiagonal pair is defined as follows.

We now consider a generalization of a Leonard pair called a **tridiagonal pair**.

A tridiagonal pair is defined as follows.

As before, V will denote a vector space over \mathbb{F} with finite positive dimension.

We now consider a generalization of a Leonard pair called a **tridiagonal pair**.

A tridiagonal pair is defined as follows.

As before, V will denote a vector space over \mathbb{F} with finite positive dimension.

As before, we consider a pair of linear transformations $A:V\to V$ and $A^*:V\to V$.

Definition of a Tridiagonal pair

We say the pair A, A^* is a **TD pair** on V whenever (1)–(4) hold below.

- Each of A, A^* is diagonalizable on V.
- ② There exists an ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A such that

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d),$$

where $V_{-1} = 0$, $V_{d+1} = 0$.

3 There exists an ordering $\{V_i^*\}_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \qquad (0 \le i \le \delta),$$

where $V_{-1}^* = 0$, $V_{\delta+1}^* = 0$.

• There is no subspace $W \subseteq V$ such that $AW \subseteq W$ and $A^*W \subseteq W$ and $W \neq 0$ and $W \neq V$.

The diameter

Referring to our definition of a TD pair,

it turns out $d = \delta$; we call this common value the **diameter** of the pair.

Leonard pairs and Tridiagonal pairs

We mentioned that a tridiagonal pair is a generalization of a Leonard pair.

Leonard pairs and Tridiagonal pairs

We mentioned that a tridiagonal pair is a generalization of a Leonard pair.

A Leonard pair is the same thing as a tridiagonal pair for which the eigenspaces V_i and V_i^* all have dimension 1.

Origins

The concept of a TD pair originated in **algebraic graph theory**, or more precisely, the theory of *Q*-**polynomial distance-regular graphs**. See

T. Ito, K. Tanabe, and P. Terwilliger. Some algebra related to *P*-and *Q*-polynomial association schemes, in: *Codes and Association Schemes (Piscataway NJ, 1999)*, Amer. Math. Soc., Providence RI, 2001, pp. 167–192; arXiv:math.CO/0406556.

TD pairs and TD systems

When working with a TD pair, it is helpful to consider a closely related object called a **TD system**.

We will define a TD system over the next few slides.

Standard orderings

Referring to our definition of a TD pair,

An ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A is called **standard** whenever

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d),$$

where $V_{-1} = 0$, $V_{d+1} = 0$.

Standard orderings

Referring to our definition of a TD pair,

An ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A is called **standard** whenever

$$A^*V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d),$$

where $V_{-1} = 0$, $V_{d+1} = 0$.

In this case, the ordering $\{V_{d-i}\}_{i=0}^d$ is also standard and no further ordering is standard.

Standard orderings

Referring to our definition of a TD pair,

An ordering $\{V_i\}_{i=0}^d$ of the eigenspaces of A is called **standard** whenever

$$A^*V_i\subseteq V_{i-1}+V_i+V_{i+1} \qquad (0\leq i\leq d),$$

where $V_{-1} = 0$, $V_{d+1} = 0$.

In this case, the ordering $\{V_{d-i}\}_{i=0}^d$ is also standard and no further ordering is standard.

A similar discussion applies to A^* .

Primitive idempotents

Given an eigenspace of a diagonalizable linear transformation, the corresponding **primitive idempotent** E is the projection onto that eigenspace.

Primitive idempotents

Given an eigenspace of a diagonalizable linear transformation, the corresponding **primitive idempotent** E is the projection onto that eigenspace.

In other words E-I vanishes on the eigenspace and E vanishes on all the other eigenspaces.

TD systems

Definition

By a **TD** system on V we mean a sequence

$$\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)$$

that satisfies the following:

- \bigcirc A, A^* is a TD pair on V.
- **2** $\{E_i\}_{i=0}^d$ is a standard ordering of the primitive idempotents of A.
- **3** $\{E_i^*\}_{i=0}^d$ is a standard ordering of the primitive idempotents of A^* .

Until further notice we fix a TD system Φ as above.

The eigenvalues

For $0 \le i \le d$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) associated with the eigenspace E_iV (resp. E_i^*V).

The eigenvalues

For $0 \le i \le d$ let θ_i (resp. θ_i^*) denote the eigenvalue of A (resp. A^*) associated with the eigenspace E_iV (resp. E_i^*V).

We call $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) the **eigenvalue sequence** (resp. **dual eigenvalue sequence**) of Φ .

A three-term recurrence

$\mathsf{Theorem}$ (Ito $+\mathsf{Tanabe}+\mathsf{T}$, 2001)

The expressions

$$\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}$$

are equal and independent of i for $2 \le i \le d - 1$.

Let $\beta + 1$ denote the common value of the above expressions.

Solving the recurrence

For the above recurrence the "simplest" solution is

$$\theta_i = d - 2i \ (0 \le i \le d),$$

 $\theta_i^* = d - 2i \ (0 \le i \le d).$

In this case $\beta = 2$.

For this solution our TD system Φ is said to have **Krawtchouk type**.

Solving the recurrence, cont.

For the above recurrence another solution is

$$\theta_i = q^{d-2i} \quad (0 \le i \le d),
\theta_i^* = q^{d-2i} \quad (0 \le i \le d),
q \ne 0, \quad q^2 \ne 1, \quad q^2 \ne -1.$$

In this case $\beta = q^2 + q^{-2}$.

For this solution Φ is said to have *q*-Krawtchouk type.

Solving the recurrence, cont.

For the above recurrence the "most general" solution is

$$\theta_{i} = a + bq^{2i-d} + cq^{d-2i} \ (0 \le i \le d),$$

$$\theta_{i}^{*} = a^{*} + b^{*}q^{2i-d} + c^{*}q^{d-2i} \ (0 \le i \le d),$$

$$q, a, b, c, a^{*}, b^{*}, c^{*} \in \overline{\mathbb{F}},$$

$$q \ne 0, q^{2} \ne 1, q^{2} \ne -1, bb^{*}cc^{*} \ne 0.$$

In this case $\beta = q^2 + q^{-2}$.

For this solution Φ is said to have q-Racah type.

Some notation

For later use we define some polynomials in an indeterminate λ .

For $0 \le i \le d$,

$$\tau_{i} = (\lambda - \theta_{0})(\lambda - \theta_{1}) \cdots (\lambda - \theta_{i-1}),
\eta_{i} = (\lambda - \theta_{d})(\lambda - \theta_{d-1}) \cdots (\lambda - \theta_{d-i+1}),
\tau_{i}^{*} = (\lambda - \theta_{0}^{*})(\lambda - \theta_{1}^{*}) \cdots (\lambda - \theta_{i-1}^{*}),
\eta_{i}^{*} = (\lambda - \theta_{d}^{*})(\lambda - \theta_{d-1}^{*}) \cdots (\lambda - \theta_{d-i+1}^{*}).$$

Note that each of τ_i , η_i , τ_i^* , η_i^* is monic with degree i.

The shape

It is known that for $0 \le i \le d$ the eigenspaces $E_i V$, $E_i^* V$ have the same dimension; we denote this common dimension by ρ_i .

Lemma (Ito+Tanabe+T, 2001)

The sequence $\{\rho_i\}_{i=0}^d$ is symmetric and unimodal; that is

$$\rho_i = \rho_{d-i} \qquad (0 \le i \le d),
\rho_{i-1} \le \rho_i \qquad (1 \le i \le d/2).$$

We call the sequence $\{\rho_i\}_{i=0}^d$ the **shape** of Φ .

A bound on the shape

Theorem (Ito+Nomura+T, 2009)

The shape $\{\rho_i\}_{i=0}^d$ of Φ satisfies

$$\rho_i \le \rho_0 \binom{d}{i} \qquad (0 \le i \le d).$$

What are the possible values for ρ_0 ?

What are the possible values for ρ_0 ?

The answer depends on the precise nature of the field \mathbb{F} .

What are the possible values for ρ_0 ?

The answer depends on the precise nature of the field \mathbb{F} .

We will explain this after a few slides.

Some relations

Lemma

Our TD system $\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)$ satisfies the following relations:

$$E_{i}E_{j} = \delta_{i,j}E_{i}, \quad E_{i}^{*}E_{j}^{*} = \delta_{i,j}E_{i}^{*} \qquad 0 \leq i, j \leq d,$$

$$1 = \sum_{i=0}^{d} E_{i}, \qquad 1 = \sum_{i=0}^{d} E_{i}^{*},$$

$$A = \sum_{i=0}^{d} \theta_{i}E_{i}, \qquad A^{*} = \sum_{i=0}^{d} \theta_{i}^{*}E_{i}^{*},$$

$$E_{i}^{*}A^{k}E_{j}^{*} = 0 \quad \text{if} \quad k < |i-j| \qquad 0 \leq i, j, k \leq d,$$

$$E_{i}A^{*k}E_{i} = 0 \quad \text{if} \quad k < |i-j| \qquad 0 < i, j, k < d.$$

We call these last two equations the triple product relations.

Given the relations on the previous slide, it is natural to consider the algebra generated by A; A^* ; $\{E_i\}_{i=0}^d$; $\{E_i^*\}_{i=0}^d$.

Given the relations on the previous slide, it is natural to consider the algebra generated by A; A^* ; $\{E_i\}_{i=0}^d$; $\{E_i^*\}_{i=0}^d$.

We call this algebra T.

Given the relations on the previous slide, it is natural to consider the algebra generated by A; A^* ; $\{E_i\}_{i=0}^d$; $\{E_i^*\}_{i=0}^d$.

We call this algebra T.

Consider the space $E_0^* T E_0^*$.

Given the relations on the previous slide, it is natural to consider the algebra generated by A; A^* ; $\{E_i\}_{i=0}^d$; $\{E_i^*\}_{i=0}^d$.

We call this algebra T.

Consider the space $E_0^* T E_0^*$.

Observe that $E_0^* T E_0^*$ is an \mathbb{F} -algebra with multiplicative identity E_0^* .

The algebra $E_0^* T E_0^*$

Theorem (Ito+Nomura+T, 2007)

(i) The \mathbb{F} -algebra $E_0^*TE_0^*$ is commutative and generated by

$$E_0^*A^iE_0^* \qquad 1 \leq i \leq d.$$

- (ii) $E_0^* T E_0^*$ has no zero-divisors; in other words it is a field.
- (iii) Viewing this field as a field extension of \mathbb{F} , the index is ρ_0 .

Corollary (Ito+Nomura+T, 2007)

If \mathbb{F} is algebraically closed then $\rho_0 = 1$.

We now consider some more relations in T.

The tridiagonal relations

Theorem (Ito+Tanabe+T, 2001)

For our TD system Φ there exist scalars $\gamma, \gamma^*, \varrho, \varrho^*$ in $\mathbb F$ such that

$$A^{3}A^{*} - (\beta + 1)A^{2}A^{*}A + (\beta + 1)AA^{*}A^{2} - A^{*}A^{3}$$

= $\gamma(A^{2}A^{*} - A^{*}A^{2}) + \varrho(AA^{*} - A^{*}A),$

$$A^{*3}A - (\beta + 1)A^{*2}AA^* + (\beta + 1)A^*AA^{*2} - AA^{*3}$$

= $\gamma^*(A^{*2}A - AA^{*2}) + \varrho^*(A^*A - AA^*).$

The above equations are called the tridiagonal relations.

The Dolan-Grady relations

In the Krawtchouk case the tridiagonal relations become the **Dolan-Grady relations**

$$[A, [A, [A, A^*]]] = 4[A, A^*],$$

$$[A^*, [A^*, [A^*, A]]] = 4[A^*, A].$$

Here [r, s] = rs - sr.

The *q*-Serre relations

In the q-Krawtchouk case the tridiagonal relations become the cubic q-Serre relations

$$A^3A^* - [3]_qA^2A^*A + [3]_qAA^*A^2 - A^*A^3 = 0,$$

$$A^{*3}A - [3]_q A^{*2}AA^* + [3]_q A^*AA^{*2} - AA^{*3} = 0.$$

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$$
 $n = 0, 1, 2, ...$

At this point it is convenient to make an assumption about our TD system Φ .

At this point it is convenient to make an assumption about our TD system Φ .

Φ is called **sharp** whenever $ρ_0 = 1$, where ${\{ρ_i\}_{i=0}^d}$ is the shape of Φ.

At this point it is convenient to make an assumption about our TD system Φ .

Φ is called **sharp** whenever $ρ_0 = 1$, where ${\{ρ_i\}_{i=0}^d}$ is the shape of Φ.

If the ground field \mathbb{F} is algebraically closed then Φ is sharp.

At this point it is convenient to make an assumption about our TD system Φ .

Φ is called **sharp** whenever $ρ_0 = 1$, where $\{ρ_i\}_{i=0}^d$ is the shape of Φ.

If the ground field \mathbb{F} is algebraically closed then Φ is sharp.

Until further notice assume Φ is sharp.

The split decomposition

For $0 \le i \le d$ define

$$U_i = (E_0^*V + \cdots + E_i^*V) \cap (E_iV + \cdots + E_dV).$$

It is known that

$$V = U_0 + U_1 + \cdots + U_d$$
 (direct sum),

and for $0 \le i \le d$ both

$$U_0 + \cdots + U_i = E_0^* V + \cdots + E_i^* V,$$

$$U_i + \cdots + U_d = E_i V + \cdots + E_d V.$$

We call the sequence $\{U_i\}_{i=0}^d$ the **split decomposition** of V with respect to Φ .

The split decomposition, cont.

Theorem (Ito+Tanabe+T, 2001)

For $0 \le i \le d$ both

$$(A - \theta_i I) U_i \subseteq U_{i+1},$$

$$(A^* - \theta_i^* I) U_i \subseteq U_{i-1},$$

where $U_{-1} = 0$, $U_{d+1} = 0$.

The split sequence, cont.

Observe that for $0 \le i \le d$,

$$(A - \theta_{i-1}I) \cdots (A - \theta_{1}I)(A - \theta_{0}I)U_{0} \subseteq U_{i},$$

$$(A^{*} - \theta_{1}^{*}I) \cdots (A^{*} - \theta_{i-1}^{*}I)(A^{*} - \theta_{i}^{*}I)U_{i} \subseteq U_{0}.$$

Therefore U_0 is invariant under

$$(A^* - \theta_1^* I) \cdots (A^* - \theta_i^* I)(A - \theta_{i-1} I) \cdots (A - \theta_0 I).$$

Let ζ_i denote the corresponding eigenvalue and note that $\zeta_0 = 1$.

We call the sequence $\{\zeta_i\}_{i=0}^d$ the **split sequence** of Φ .

Characterizing the split sequence

The split sequence $\{\zeta_i\}_{i=0}^d$ is characterized as follows.

Lemma (Nomura+T, 2007)

For
$$0 \le i \le d$$
,

$$E_0^* \tau_i(A) E_0^* = \frac{\zeta_i E_0^*}{(\theta_0^* - \theta_1^*)(\theta_0^* - \theta_2^*) \cdots (\theta_0^* - \theta_i^*)}$$

A restriction on the split sequence

The split sequence $\{\zeta_i\}_{i=0}^d$ satisfies two inequalities.

Lemma (Ito+Tanabe+T, 2001)

$$0 \neq E_0^* E_d E_0^*, \\ 0 \neq E_0^* E_0 E_0^*.$$

Consequently

$$0 \neq \zeta_d,$$

$$0 \neq \sum_{i=0}^d \eta_{d-i}(\theta_0) \eta_{d-i}^*(\theta_0^*) \zeta_i.$$

The parameter array

Lemma (Ito+ Nomura+T, 2008)

The TD system Φ is determined up to isomorphism by the sequence

$$(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\zeta_i\}_{i=0}^d).$$

We call this sequence the **parameter array** of Φ .

Our next goal is to describe the μ -Theorem.

Our next goal is to describe the μ -Theorem.

This has to do with an algebra \mathbb{T} .

Our next goal is to describe the μ -Theorem.

This has to do with an algebra \mathbb{T} .

 \mathbb{T} is an abstract version of T defined by generators and relations.

Our next goal is to describe the μ -Theorem.

This has to do with an algebra \mathbb{T} .

 ${\mathbb T}$ is an abstract version of T defined by generators and relations.

We will define \mathbb{T} shortly.

Feasible sequences

Definition

Let d denote a nonnegative integer and let $(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$ denote a sequence of scalars taken from \mathbb{F} . This sequence is called **feasible** whenever both

- (i) $\theta_i \neq \theta_j$, $\theta_i^* \neq \theta_j^*$ if $i \neq j$ $(0 \leq i, j \leq d)$;
- (ii) the expressions $\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_i}$, $\frac{\theta_{i-2}^*-\theta_{i+1}^*}{\theta_{i-1}^*-\theta_i^*}$ are equal and independent of i for $2\leq i\leq d-1$.

The algebra \mathbb{T}

Definition

Fix a feasible sequence $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$. Let $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$ denote the \mathbb{F} -algebra defined by generators a, $\{e_i\}_{i=0}^d$, a^* , $\{e_i^*\}_{i=0}^d$ and relations

$$e_{i}e_{j} = \delta_{i,j}e_{i}, \quad e_{i}^{*}e_{j}^{*} = \delta_{i,j}e_{i}^{*} \qquad 0 \leq i,j \leq d,$$

$$1 = \sum_{i=0}^{d} e_{i}, \qquad 1 = \sum_{i=0}^{d} e_{i}^{*},$$

$$a = \sum_{i=0}^{d} \theta_{i}e_{i}, \qquad a^{*} = \sum_{i=0}^{d} \theta_{i}^{*}e_{i}^{*},$$

$$e_{i}^{*}a^{k}e_{j}^{*} = 0 \quad \text{if} \quad k < |i-j| \qquad 0 \leq i,j,k \leq d,$$

$$e_{i}a^{*k}e_{j} = 0 \quad \text{if} \quad k < |i-j| \qquad 0 \leq i,j,k \leq d.$$

TD systems and the algebra $\mathbb T$

Over the next few slides, we explain how TD systems are related to finite-dimensional irreducible \mathbb{T} -modules.

From TD systems to \mathbb{T} -modules

Lemma

Let $(A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)$ denote a TD system on V with eigenvalue sequence $\{\theta_i^*\}_{i=0}^d$ and dual eigenvalue sequence $\{\theta_i^*\}_{i=0}^d$. Let $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$ where $p = (\{\theta_i^*\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$. Then there exists a unique \mathbb{T} -module structure on V such that a, e_i , a^* , e_i^* acts as A, E_i , A^* , E_i^* respectively. This \mathbb{T} -module is irreducible.

From T-modules to TD systems

Lemma

Fix a feasible sequence $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$ and write $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$. Let V denote a finite-dimensional irreducible \mathbb{T} -module.

- (i) There exist nonnegative integers r, δ $(r + \delta \le d)$ such that for $0 \le i \le d$,
 - $e_i^* V \neq 0$ if and only if $r \leq i \leq r + \delta$.
- (ii) There exist nonnegative integers t, δ^* $(t + \delta^* \le d)$ such that for $0 \le i \le d$,

$$e_i V \neq 0$$
 if and only if $t \leq i \leq t + \delta^*$.

- (iii) $\delta = \delta^*$.
- (iv) The sequence $(a; \{e_i\}_{i=t}^{t+\delta}; a^*; \{e_i^*\}_{i=r}^{r+\delta})$ acts on V as a TD system of diameter δ .

The structure of \mathbb{T}

Fix a feasible sequence $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$ and consider the \mathbb{F} -algebra $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$.

The structure of \mathbb{T}

Fix a feasible sequence $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$ and consider the \mathbb{F} -algebra $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$.

As we did with T we consider the space $e_0^* \mathbb{T} e_0^*$.

The structure of \mathbb{T}

Fix a feasible sequence $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$ and consider the \mathbb{F} -algebra $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$.

As we did with T we consider the space $e_0^* \mathbb{T} e_0^*$.

Observe that $e_0^* \mathbb{T} e_0^*$ is an \mathbb{F} -algebra with multiplicative identity e_0^* .

Notation

Let $\{\lambda_i\}_{i=1}^d$ denote mutually commuting indeterminates.

Let $\mathbb{F}[\lambda_1,\ldots,\lambda_d]$ denote the \mathbb{F} -algebra consisting of the polynomials in $\{\lambda_i\}_{i=1}^d$ that have all coefficients in \mathbb{F} .

The μ -Theorem

Theorem (Ito+Nomura+T, 2009)

There exists an \mathbb{F} -algebra isomorphism

$$\mathbb{F}[\lambda_1,\ldots,\lambda_d] \to e_0^* \mathbb{T} e_0^*$$

that sends

$$\lambda_i \mapsto e_0^* a^i e_0^*$$

for 1 < i < d.

The μ -Theorem: proof summary

Proof summary: We first verify the result assuming p has q-Racah type. To do this we make use of the quantum affine algebra $U_q(\hat{\mathfrak{sl}}_2)$. We identify two elements in $U_q(\hat{\mathfrak{sl}}_2)$ that satisfy the tridiagonal relations. We let these elements act on $U_q(\hat{\mathfrak{sl}}_2)$ -modules of the form $W_1 \otimes W_2 \otimes \cdots \otimes W_d$ where each W_i is an evaluation module of dimension 2. Each of these actions gives a TD system of q-Racah type which in turn yields a \mathbb{T} -module. The resulting supply of \mathbb{T} -modules is sufficiently rich to contradict the existence of an algebraic relation among $\{e_0^*a^ie_0^*\}_{i=1}^d$.

We then remove the assumption that p has q-Racah type. In this step the main ingredient is to show that for any polynomial h over \mathbb{F} in 2d+2 variables, if h(p)=0 under the assumption that p is q-Racah, then h(p)=0 without the assumption.

A classification of sharp tridiagonal systems

Theorem (Ito+Nomura+T, 2009)

Let $(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\zeta_i\}_{i=0}^d)$ (1) denote a sequence of scalars in $\mathbb F$. Then there exists a sharp TD system Φ over $\mathbb F$ with parameter array (1) if and only if:

- (i) $\theta_i \neq \theta_j$, $\theta_i^* \neq \theta_j^*$ if $i \neq j$ $(0 \leq i, j \leq d)$;
- (ii) the expressions $\frac{\theta_{i-2}-\theta_{i+1}}{\theta_{i-1}-\theta_i}$, $\frac{\theta_{i-2}^*-\theta_{i+1}^*}{\theta_{i-1}^*-\theta_i^*}$ are equal and independent of i for $2 \le i \le d-1$;
- (iii) $\zeta_0 = 1$, $\zeta_d \neq 0$, and

$$0 \neq \sum_{i=0}^{d} \eta_{d-i}(\theta_0) \eta_{d-i}^*(\theta_0^*) \zeta_i.$$

Suppose (i)–(iii) hold. Then Φ is unique up to isomorphism of TD systems.

The classification: proof summary

Proof ("only if"): By our previous remarks.

Proof ("if"): Consider the algebra $\mathbb{T} = \mathbb{T}(p, \mathbb{F})$ where $p = (\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d)$.

By the $\mu\text{-Theorem }e_0^*\mathbb{T}e_0^*$ is a polynomial algebra.

Therefore $e_0^* \mathbb{T} e_0^*$ has a 1-dimensional module on which

$$e_0^* \tau_i(a) e_0^* = \frac{\zeta_i e_0^*}{(\theta_0^* - \theta_1^*)(\theta_0^* - \theta_2^*) \cdots (\theta_0^* - \theta_i^*)}$$

for $1 \le i \le d$.

The above 1-dimensional $e_0^* \mathbb{T} e_0^*$ -module induces a \mathbb{T} -module V which turns out to be finite-dimensional; by construction $e_0^* V$ has dimension 1.

One checks that the \mathbb{T} -module V has a unique maximal proper submodule M.

The classification: proof summary, cont.

Consider the irreducible \mathbb{T} -module V/M.

By the inequalities in (iii),

$$e_0^* e_d e_0^* \neq 0, \qquad e_0^* e_0 e_0^* \neq 0$$

on V/M.

Therefore each of e_0 , e_d is nonzero on V/M.

Now the \mathbb{T} -generators $(a; \{e_i\}_{i=0}^d; a^*; \{e_i^*\}_{i=0}^d)$ act on V/M as a sharp TD system of diameter d.

One checks that this TD system has the desired parameter array $(\{\theta_i\}_{i=0}^d; \{\theta_i^*\}_{i=0}^d; \{\zeta_i\}_{i=0}^d)$.

QED

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined an algebra $\mathbb T$ by generators and relations, and proved the $\mu\text{-Theorem}$ about its structure.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined an algebra $\mathbb T$ by generators and relations, and proved the $\mu\text{-}\mathsf{Theorem}$ about its structure.

We used the $\mu\text{-Theorem}$ to classify the sharp TD systems up to isomorphism.

We defined a TD system and discussed its eigenvalues, dual eigenvalues, shape, tridiagonal relations, split decomposition and parameter array.

We defined an algebra $\mathbb T$ by generators and relations, and proved the $\mu\text{-}\mathsf{Theorem}$ about its structure.

We used the $\mu\text{-Theorem}$ to classify the sharp TD systems up to isomorphism.

Thank you for your attention!

THE END

